network #1
							
								
								
									
										717
									
								
								index.html
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										717
									
								
								index.html
									
									
									
									
									
										Normal file
									
								
							| @ -0,0 +1,717 @@ | ||||
| <script> | ||||
|     /* Vector Library */ | ||||
| /* | ||||
| 	Works with n-dimensional vectors: represented as arrays of numbers | ||||
| */ | ||||
| var V = {}; | ||||
| V.Subtract = function(inV1, inV2) | ||||
| { | ||||
| 	var out = []; | ||||
| 	for(var i=0; i<inV1.length; i++) | ||||
| 	{ | ||||
| 		out[i] = inV1[i] - inV2[i]; | ||||
| 	} | ||||
| 	return out; | ||||
| }; | ||||
| V.Add = function(inV1, inV2) | ||||
| { | ||||
| 	var out = []; | ||||
| 	for(var i=0; i<inV1.length; i++) | ||||
| 	{ | ||||
| 		out[i] = inV1[i] + inV2[i]; | ||||
| 	} | ||||
| 	return out; | ||||
| }; | ||||
| V.Distance = function(inV1, inV2) | ||||
| { | ||||
| 	return V.Length(V.Subtract(inV1, inV2)) | ||||
| }; | ||||
| V.Dot = function(inV1, inV2) | ||||
| { | ||||
| 	var out = 0; | ||||
| 	for(var i=0; i<inV1.length; i++) | ||||
| 	{ | ||||
| 		out += inV1[i] * inV2[i]; | ||||
| 	} | ||||
| 	return out; | ||||
| }; | ||||
| V.Multiply = function(inV1, inV2) | ||||
| { | ||||
| 	var out = []; | ||||
| 	for(var i=0; i<inV1.length; i++) | ||||
| 	{ | ||||
| 		out[i] = inV1[i] * inV2[i]; | ||||
| 	} | ||||
| 	return out; | ||||
| }; | ||||
| V.Length = function(inV1) | ||||
| { | ||||
| 	return Math.sqrt(V.Dot(inV1, inV1)); | ||||
| }; | ||||
| V.Scale = function(inV1, inScalar) | ||||
| { | ||||
| 	var out = []; | ||||
| 	for(var i=0; i<inV1.length; i++) | ||||
| 	{ | ||||
| 		out[i] = inV1[i] * inScalar; | ||||
| 	} | ||||
| 	return out; | ||||
| }; | ||||
| V.Normalize = function(inV1) | ||||
| { | ||||
|     return V.Scale(inV1, 1/V.Length(inV1)); | ||||
| }; | ||||
| V.Clone = function(inV1) | ||||
| { | ||||
| 	var out = []; | ||||
| 	var i; | ||||
| 	for(i=0; i<inV1.length; i++) | ||||
| 	{ | ||||
| 		out[i] = inV1[i]; | ||||
| 	} | ||||
| 	return out; | ||||
| }; | ||||
| 
 | ||||
| 
 | ||||
| 
 | ||||
| 
 | ||||
| 
 | ||||
| 
 | ||||
| 
 | ||||
| 
 | ||||
| 
 | ||||
| 
 | ||||
| 
 | ||||
| var M = {}; | ||||
| 
 | ||||
| /************************** | ||||
| M A T R I X | ||||
| */ | ||||
| // transform inC with inM | ||||
| // returns the transformed inC | ||||
| M.Transform = function(inM, inC) | ||||
| { | ||||
| 	var outM = []; | ||||
| 	var outV = []; | ||||
| 	var i, j; | ||||
| 	 | ||||
| 	for(i=0; i<inC.length; i++) | ||||
| 	{ | ||||
| 		outV = []; | ||||
| 		for(j=0; j<inM.length; j++) | ||||
| 		{ | ||||
| 			outV[j] = V.Dot(inM[j], inC[i]); | ||||
| 		} | ||||
| 		outM.push(outV); | ||||
| 	} | ||||
| 	return outM; | ||||
| }; | ||||
| 
 | ||||
| 
 | ||||
| // flip rows for columns in inM | ||||
| // returns the modified Matrix | ||||
| M.Transpose = function(inM) | ||||
| { | ||||
| 	var dimensions = inM[0].length; | ||||
| 	var i, j; | ||||
| 	var outM = []; | ||||
| 	var outV = []; | ||||
| 	for(i=0; i<dimensions; i++) | ||||
| 	{ | ||||
| 		outV = []; | ||||
| 		for(j=0; j<inM.length; j++) | ||||
| 		{ | ||||
| 			//the Ith componenth of the Jth member | ||||
| 			outV[j] = inM[j][i]; | ||||
| 		} | ||||
| 		outM.push(outV); | ||||
| 	} | ||||
| 	return outM; | ||||
| } | ||||
| 
 | ||||
| // returns a matrix that is the result of the outer product of inV1 and inV2 | ||||
| // where the Nth member of outM is a copy of V1, scaled by the Nth component of V2 | ||||
| M.Outer = function(inV1, inV2) | ||||
| { | ||||
| 	var outM = []; | ||||
| 	 | ||||
| 	var i; | ||||
| 	for(i=0; i<inV2.length; i++) | ||||
| 	{ | ||||
| 		outM.push(V.Scale(inV1, inV2[i])); | ||||
| 	} | ||||
| 	 | ||||
| 	return outM; | ||||
| }; | ||||
| 
 | ||||
| 
 | ||||
| 
 | ||||
| 
 | ||||
| 
 | ||||
| /************************** | ||||
| B A T C H | ||||
| */ | ||||
| //smash the members of inM with a softmax | ||||
| M.Sigmoid = function(inM) | ||||
| { | ||||
| 	var i, j; | ||||
| 	var outM = []; | ||||
| 	var outV = []; | ||||
| 	for(i=0; i<inM.length; i++) | ||||
| 	{ | ||||
| 		outV = []; | ||||
| 		for(j=0; j<inM[i].length; j++) | ||||
| 		{ | ||||
| 			outV[j] = 1/(1 + Math.pow(Math.E, -inM[i][j])); | ||||
| 		} | ||||
| 		outM.push(outV); | ||||
| 	} | ||||
| 	return outM; | ||||
| }; | ||||
| // return the derivatives of the members of inM (that have been run through the softmax) | ||||
| M.Derivative = function(inM) | ||||
| { | ||||
| 	var i, j; | ||||
| 	var component; | ||||
| 	var outM = []; | ||||
| 	var outV = []; | ||||
| 	for(i=0; i<inM.length; i++) | ||||
| 	{ | ||||
| 		outV = []; | ||||
| 		for(j=0; j<inM[i].length; j++) | ||||
| 		{ | ||||
| 			component = inM[i][j]; | ||||
| 			outV[j] = component*(1 - component); | ||||
| 		} | ||||
| 		outM.push(outV); | ||||
| 	} | ||||
| 	return outM; | ||||
| }; | ||||
| // batch multiply these pairs of vectors | ||||
| M.Multiply = function(inCloud1, inCloud2) | ||||
| { | ||||
| 	var i; | ||||
| 	var outM = []; | ||||
| 	for(i=0; i<inCloud1.length; i++) | ||||
| 	{ | ||||
| 		outM.push(V.Multiply(inCloud1[i], inCloud2[i])); | ||||
| 	}; | ||||
| 	return outM; | ||||
| }; | ||||
| // batch add | ||||
| M.Add = function(inCloud1, inCloud2) | ||||
| { | ||||
|     var outM = []; | ||||
|      | ||||
|     var i; | ||||
|     for(i=0; i<inCloud1.length; i++) | ||||
|     { | ||||
|         outM.push(V.Add(inCloud1[i], inCloud2[i])); | ||||
|     } | ||||
|     return outM; | ||||
| }; | ||||
| M.Subtract = function(inCloud1, inCloud2) | ||||
| { | ||||
|     var outM = []; | ||||
|      | ||||
|     var i; | ||||
|     for(i=0; i<inCloud1.length; i++) | ||||
|     { | ||||
|         outM.push(V.Subtract(inCloud1[i], inCloud2[i])); | ||||
|     } | ||||
|     return outM; | ||||
| }; | ||||
| M.Scale = function(inCloud1, inScalar) | ||||
| { | ||||
|     var outM = []; | ||||
|      | ||||
|     var i; | ||||
|     for(i=0; i<inCloud1.length; i++) | ||||
|     { | ||||
|         outM.push(V.Scale(inCloud1[i], inScalar)); | ||||
|     } | ||||
|     return outM; | ||||
| }; | ||||
| M.Clone = function(inM) | ||||
| { | ||||
|     var i; | ||||
|     var outM; | ||||
|     var outV; | ||||
|      | ||||
|     outM =[]; | ||||
|     for(i=0; i<inM.length; i++) | ||||
|     { | ||||
|         outM.push(V.Clone(inM[i])); | ||||
|     } | ||||
|     return outM; | ||||
| }; | ||||
| 
 | ||||
| 
 | ||||
| /************************** | ||||
| B O U N D S | ||||
| */ | ||||
| // return the bounding box of inM as a two-member Matrix | ||||
| M.Bounds = function(inM) | ||||
| { | ||||
| 	var dimensions = inM[0].length; | ||||
| 	var i, j; | ||||
| 	var min = []; | ||||
| 	var max = []; | ||||
| 	for(i=0; i<dimensions; i++) | ||||
| 	{ | ||||
| 		min[i] = 9999999; | ||||
| 		max[i] = -999999; | ||||
| 	} | ||||
| 	for(i=0; i<inM.length; i++) | ||||
| 	{ | ||||
| 		for(j=0; j<dimensions; j++) | ||||
| 		{ | ||||
| 			if(inM[i][j] < min[j]) | ||||
| 			{ | ||||
| 				min[j] = inM[i][j]; | ||||
| 			} | ||||
| 			if(inM[i][j] > max[j]) | ||||
| 			{ | ||||
| 				max[j] = inM[i][j]; | ||||
| 			}			 | ||||
| 		} | ||||
| 	} | ||||
| 	return [min, max]; | ||||
| }; | ||||
| 
 | ||||
| // find the local coordinates for all the members of inM, within the bounding box inB | ||||
| // returns a new Matrix of relative vectors | ||||
| M.GlobalToLocal = function(inM, inB) | ||||
| { | ||||
| 	var dimensions = inB[0].length; | ||||
| 	var i, j; | ||||
| 	var outM = []; | ||||
| 	var outV = []; | ||||
| 	var size; | ||||
| 	var min; | ||||
| 	var denominator; | ||||
| 	for(i=0; i<inM.length; i++) | ||||
| 	{ | ||||
| 		outV = []; | ||||
| 		for(j=0; j<dimensions; j++) | ||||
| 		{ | ||||
| 			denominator = inB[1][j] - inB[0][j]; | ||||
| 			if(denominator == 0) | ||||
| 			{ | ||||
| 				outV[j] = inB[1][j];// if min and max are the same, just output max | ||||
| 			} | ||||
| 			else | ||||
| 			{ | ||||
| 				outV[j] = (inM[i][j] - inB[0][j])/denominator;	 | ||||
| 			} | ||||
| 		} | ||||
| 		outM.push(outV); | ||||
| 	} | ||||
| 	return outM; | ||||
| }; | ||||
| // find the global coordinates for all the members of inM, within the bounding box inB | ||||
| // returns a new Matrix of global vectors | ||||
| M.LocalToGlobal = function(inM, inB) | ||||
| { | ||||
| 	var dimensions = inB[0].length; | ||||
| 	var i, j; | ||||
| 	var outM = []; | ||||
| 	var outV = []; | ||||
| 	var size; | ||||
| 	var min; | ||||
| 	for(i=0; i<inM.length; i++) | ||||
| 	{ | ||||
| 		outV = []; | ||||
| 		for(j=0; j<dimensions; j++) | ||||
| 		{ | ||||
| 			outV[j] = inB[0][j] + inM[i][j] * (inB[1][j] - inB[0][j]); | ||||
| 		} | ||||
| 		outM.push(outV); | ||||
| 	} | ||||
| 	return outM; | ||||
| }; | ||||
| 
 | ||||
| 
 | ||||
| /************************** | ||||
| C L O U D | ||||
| */ | ||||
| // return some number of points from inM as a new Matrix | ||||
| M.Reduce = function(inM, inCount) | ||||
| { | ||||
| 	var largeGroupSize; | ||||
| 	var largeGroupCount; | ||||
| 	var smallGroupSize; | ||||
| 	var outM = []; | ||||
| 	 | ||||
| 	largeGroupSize = Math.floor(inM.length/inM); | ||||
| 	smallGroupSize = inM.length%inCount | ||||
| 	for(i=0; i<inM-1; i++) | ||||
| 	{ | ||||
| 		index = i*largeGroupSize + Math.floor(Math.random()*largeGroupSize); | ||||
| 		outM.push( V.Clone(inM[index]) ); | ||||
| 	} | ||||
| 	if(smallGroupSize != 0) | ||||
| 	{ | ||||
| 		index = i*largeGroupSize + Math.floor(Math.random()*smallGroupSize) | ||||
| 		outM.push( V.Clone(inM[index]) ); | ||||
| 	} | ||||
| 	return outM; | ||||
| }; | ||||
| 
 | ||||
| // return a Matrix of length inCount, where all the members fall within the circle paramemters, including a bias | ||||
| M.Circle = function(inCenter, inRadius, inBias, inCount) | ||||
| { | ||||
| 	var i, j; | ||||
| 	var vector; | ||||
| 	var length; | ||||
| 	var outM = []; | ||||
| 	 | ||||
| 	for(i=0; i<inCount; i++) | ||||
| 	{ | ||||
| 		//generate a random vector | ||||
| 		vector = []; | ||||
| 		for(j=0; j<inCenter.length; j++) | ||||
| 		{ | ||||
| 			vector[j] = (Math.random() - 0.5); | ||||
| 		} | ||||
| 		 | ||||
| 		//normalize the vector | ||||
| 		vector = V.Scale(vector, 1/V.Length(vector)); | ||||
| 		 | ||||
| 		//set a random length (with a bias) | ||||
| 		length = Math.pow(Math.random(), Math.log(inBias)/Math.log(0.5))*inRadius; | ||||
| 		vector = V.Scale(vector, length); | ||||
| 		 | ||||
| 		//move the vector to the center | ||||
| 		vector = V.Add(vector, inCenter); | ||||
| 		 | ||||
| 		outM.push(vector); | ||||
| 	} | ||||
| 	return outM; | ||||
| }; | ||||
| 
 | ||||
| // return a Matrix of length inCount, where all the members fall within inBounds | ||||
| M.Box = function(inBounds, inCount) | ||||
| { | ||||
| 	var vector; | ||||
| 	var dimensions = inBounds[0].length; | ||||
| 	var i, j; | ||||
| 	var min, max; | ||||
| 	var outM = []; | ||||
| 	 | ||||
| 	for(i=0; i<inCount; i++) | ||||
| 	{ | ||||
| 		vector = []; | ||||
| 		for(j=0; j<dimensions; j++) | ||||
| 		{ | ||||
| 			min = inBounds[0][j]; | ||||
| 			max = inBounds[1][j]; | ||||
| 			 | ||||
| 			vector[j] = min + Math.random()*(max - min); | ||||
| 		} | ||||
| 		outM.push(vector); | ||||
| 	} | ||||
| 	return outM; | ||||
| }; | ||||
| 
 | ||||
| //combine all the matricies in inList into one long Matrix | ||||
| M.Combine = function(inList) | ||||
| { | ||||
| 	var i, j; | ||||
| 	var outM = []; | ||||
| 	for(i=0; i<inList.length; i++) | ||||
| 	{ | ||||
| 		for(j=0; j<inList[i].length; j++) | ||||
| 		{ | ||||
| 			outM.push(V.Clone(inList[i][j])); | ||||
| 		} | ||||
| 	} | ||||
| 	return outM; | ||||
| }; | ||||
| 
 | ||||
| /* | ||||
| PLEASE NOTE: These padding routines are unique to this library in that they | ||||
| actually modify the input object(s) rather than returning modified copies! | ||||
| */ | ||||
| // add a new component (set to '1') to each member of inM | ||||
| M.Pad = function(inM) | ||||
| { | ||||
| 	var i; | ||||
| 	for(i=0; i<inM.length; i++) | ||||
| 	{ | ||||
| 		inM[i].push(1); | ||||
| 	} | ||||
|     	return inM; | ||||
| }; | ||||
| // remove the last component of each memeber of inM | ||||
| M.Unpad = function(inM) | ||||
| { | ||||
| 	var i; | ||||
|     	for(i=0; i<inM.length; i++) | ||||
| 	{ | ||||
|         	inM[i].pop(); | ||||
| 	} | ||||
| 	return inM; | ||||
| }; | ||||
| // set the last component of each member of inM to 1 | ||||
| M.Repad = function(inM) | ||||
| { | ||||
| 	var i; | ||||
| 	var last = inM[0].length-1; | ||||
|     	for(i=0; i<inM.length; i++) | ||||
| 	{ | ||||
|         	inM[i][last] = 1; | ||||
| 	} | ||||
| 	return inM; | ||||
| }; | ||||
| </script> | ||||
| 
 | ||||
| <script> | ||||
| var NN = {}; | ||||
| 
 | ||||
| NN.TrainingSet = {}; | ||||
| NN.TrainingSet.Instances = []; | ||||
| NN.TrainingSet.Create = function() | ||||
| { | ||||
|     var obj = {}; | ||||
| 
 | ||||
|     obj.Input = []; | ||||
|     obj.Output = []; | ||||
|     obj.Order = []; | ||||
|      | ||||
|     NN.TrainingSet.Instances.push(obj); | ||||
|     return obj; | ||||
| }; | ||||
| NN.TrainingSet.AddPoint = function(inTrainingSet, inType, inData) | ||||
| { | ||||
|     inTrainingSet.Input.push(inData); | ||||
|     inTrainingSet.Output.push(inType); | ||||
|     inTrainingSet.Order.push(inTrainingSet.Order.length); | ||||
| }; | ||||
| NN.TrainingSet.AddCloud = function(inTrainingSet, inLabel, inCloud) | ||||
| { | ||||
|     var i; | ||||
|     for(i=0; i<inCloud.length; i++) | ||||
|     { | ||||
|         NN.TrainingSet.AddPoint(inTrainingSet, inLabel, inCloud[i]); | ||||
|     } | ||||
| }; | ||||
| NN.TrainingSet.Randomize = function(inTrainingSet) | ||||
| { | ||||
|       var newOrder = []; | ||||
|       var selection; | ||||
|       while(inTrainingSet.Order.length != 0) | ||||
|       { | ||||
|           selection = Math.floor(inTrainingSet.Order.length * Math.random()); | ||||
|           inTrainingSet.Order.splice(selection, 1); | ||||
|           newOrder.push(selection); | ||||
|       } | ||||
|       inTrainingSet.Order = newOrder; | ||||
| }; | ||||
| 
 | ||||
| 
 | ||||
| NN.Layer = {}; | ||||
| NN.Layer.Create = function(sizeIn, sizeOut) | ||||
| { | ||||
|     var i; | ||||
|     var min = []; | ||||
|     var max = []; | ||||
|     var obj = {}; | ||||
|      | ||||
|     sizeIn++; | ||||
|      | ||||
|     obj.Forward = {}; | ||||
|     for(i=0; i<sizeIn; i++) | ||||
|     { | ||||
|         min.push(-1); | ||||
|         max.push(1); | ||||
|     } | ||||
|     obj.Forward.Matrix = M.Box([min, max], sizeOut); | ||||
|     obj.Forward.StageInput = []; | ||||
|     obj.Forward.StageAffine = []; | ||||
|     obj.Forward.StageSigmoid = []; | ||||
|     obj.Forward.StageDerivative = []; | ||||
|      | ||||
|     obj.Backward = {}; | ||||
|     obj.Backward.Matrix = M.Transpose(obj.Forward.Matrix); | ||||
|     obj.Backward.StageInput = []; | ||||
|     obj.Backward.StageDerivative = []; | ||||
|     obj.Backward.StageAffine = []; | ||||
|      | ||||
|     return obj; | ||||
| }; | ||||
| NN.Layer.Forward = function(inLayer, inInput) | ||||
| { | ||||
|     inLayer.Forward.StageInput = M.Pad(inInput); // Pad the input | ||||
|     inLayer.Forward.StageAffine = M.Transform(inLayer.Forward.Matrix, inLayer.Forward.StageInput); | ||||
|     inLayer.Forward.StageSigmoid = M.Sigmoid(inLayer.Forward.StageAffine); | ||||
|      | ||||
|     return inLayer.Forward.StageSigmoid; | ||||
| }; | ||||
| NN.Layer.Error = function(inLayer, inTarget) | ||||
| { | ||||
|     return M.Subtract(inLayer.Forward.StageSigmoid, inTarget); | ||||
| }; | ||||
| NN.Layer.Backward = function(inLayer, inInput) | ||||
| { | ||||
|     /* We need the derivative of the forward pass, but only during the backward pass. | ||||
|     That's why-- even though it "belongs" to the forward pass-- it is being calculated here. */ | ||||
|     inLayer.Forward.StageDerivative = M.Derivative(inLayer.Forward.StageSigmoid); | ||||
|      | ||||
|     /* This transpose matrix is for sending the error back to a previous layer. | ||||
|     And again, even though it is derived directly from the forward matrix, it is only needed during the backward pass so we calculate it here.*/ | ||||
|     inLayer.Backward.Matrix = M.Transpose(inLayer.Forward.Matrix); | ||||
|      | ||||
|     /* When the error vector arrives at a layer, it always needs to be multiplied (read 'supressed') by the derivative of | ||||
|     what the layer output earlier during the forward pass. | ||||
|     So despite its name, Backward.StageDerivative contains the result of this *multiplication* and not some new derivative calculation.*/ | ||||
|     inLayer.Backward.StageInput = inInput; | ||||
|     inLayer.Backward.StageDerivative = M.Multiply(inLayer.Backward.StageInput, inLayer.Forward.StageDerivative); | ||||
|     inLayer.Backward.StageAffine = M.Transform(inLayer.Backward.Matrix, inLayer.Backward.StageDerivative); | ||||
|      | ||||
|     return M.Unpad(inLayer.Backward.StageAffine);// Unpad the output | ||||
| }; | ||||
| NN.Layer.Adjust = function(inLayer, inLearningRate) | ||||
| { | ||||
|     var deltas; | ||||
|     var vector; | ||||
|     var scalar; | ||||
|     var i, j; | ||||
|      | ||||
|     for(i=0; i<inLayer.Forward.StageInput.length; i++) | ||||
|     { | ||||
|         deltas = M.Outer(inLayer.Forward.StageInput[i], inLayer.Backward.StageDerivative[i]); | ||||
|         deltas = M.Scale(deltas, inLearningRate); | ||||
|          | ||||
|         inLayer.Forward.Matrix = M.Subtract(inLayer.Forward.Matrix, deltas); | ||||
|     } | ||||
| }; | ||||
| NN.Layer.Stochastic = function(inLayer, inTrainingSet, inIterations) | ||||
| { | ||||
|     /* this method is ONLY for testing individual layers, and does not translate to network-level training */ | ||||
|     var i, j; | ||||
|     var current; | ||||
|     var error; | ||||
|     for(i=0; i<inIterations; i++) | ||||
|     { | ||||
|         NN.TrainingSet.Randomize(inTrainingSet); | ||||
|         for(j=0; j<inTrainingSet.Order.length; j++) | ||||
|         { | ||||
|             current = inTrainingSet.Order[j]; | ||||
|             NN.Layer.Forward(inLayer, [inTrainingSet.Input[current]]); | ||||
|             error = M.Subtract(inLayer.Forward.StageSigmoid, [inTrainingSet.Output[current]]); | ||||
|             NN.Layer.Backward(inLayer, error); | ||||
|             NN.Layer.Adjust(inLayer, 0.1); | ||||
|         } | ||||
|     } | ||||
| }; | ||||
| 
 | ||||
| NN.Network = {}; | ||||
| NN.Network.Instances = []; | ||||
| NN.Network.Create = function() | ||||
| { | ||||
|     var obj = {}; | ||||
|     var i;     | ||||
|      | ||||
|     obj.Layers = []; | ||||
|     obj.LearningRate = 0.1; | ||||
|     obj.Error = []; | ||||
|      | ||||
|     for(i=0; i<arguments.length-1; i++) | ||||
|     { | ||||
|         obj.Layers.push(NN.Layer.Create(arguments[i], arguments[i+1])); | ||||
|     } | ||||
|      | ||||
|     NN.Network.Instances.push(obj); | ||||
|     return obj; | ||||
| }; | ||||
| NN.Network.Observe = function(inNetwork, inBatch) | ||||
| { | ||||
|       var input = M.Clone(inBatch); | ||||
|       var i; | ||||
|       for(i=0; i<inNetwork.Layers.length; i++) | ||||
|       { | ||||
|           input = NN.Layer.Forward(inNetwork.Layers[i], input); | ||||
|       } | ||||
|       return inNetwork.Layers[inNetwork.Layers.length-1].Forward.StageSigmoid; | ||||
| }; | ||||
| NN.Network.Error = function(inNetwork, inTraining) | ||||
| { | ||||
|       return M.Subtract(inNetwork.Layers[inNetwork.Layers.length-1].Forward.StageSigmoid, inTraining); | ||||
| }; | ||||
| NN.Network.Learn = function(inNetwork, inError) | ||||
| { | ||||
|       var input = inError; | ||||
|       var i; | ||||
|       for(i=inNetwork.Layers.length-1; i>=0; i--) | ||||
|       { | ||||
|           input = NN.Layer.Backward(inNetwork.Layers[i], input); | ||||
|           NN.Layer.Adjust(inNetwork.Layers[i], inNetwork.LearningRate); | ||||
|       } | ||||
| }; | ||||
| 
 | ||||
| 
 | ||||
| NN.Network.Batch = function(inNetwork, inTrainingSet, inIterations) | ||||
| { | ||||
|     var i; | ||||
|     for(i=0; i<inIterations; i++) | ||||
|     { | ||||
|         NN.Network.Observe(inNetwork, inTrainingSet.Input); | ||||
|         inNetwork.Error = NN.Network.Error(inNetwork, inTrainingSet.Output) | ||||
|         NN.Network.Learn(inNetwork, inNetwork.Error); | ||||
|     } | ||||
| }; | ||||
| NN.Network.Stochastic = function(inNetwork, inTrainingSet, inIterations) | ||||
| { | ||||
|     var i, j; | ||||
|     var current; | ||||
|      | ||||
|     for(i=0; i<inIterations; i++) | ||||
|     { | ||||
|         NN.TrainingSet.Randomize(inTrainingSet); | ||||
|         for(j=0; j<inTrainingSet.Order.length; j++) | ||||
|         { | ||||
|             current = inTrainingSet.Order[j]; | ||||
|             NN.Network.Observe(inNetwork, [inTrainingSet.Input[current]]); | ||||
|             inNetwork.Error = NN.Network.Error(inNetwork, [inTrainingSet.Output[current]]); | ||||
|             NN.Network.Learn(inNetwork, inNetwork.Error); | ||||
|         } | ||||
|     } | ||||
| }; | ||||
| </script> | ||||
| 
 | ||||
| <script> | ||||
|     let matrix1 = [ | ||||
|     [-0.43662948305036675, -0.368590640707799, -0.23227179558890843], | ||||
|     [-0.004292653969505622, 0.38670055222186317, -0.2478421495365568], | ||||
|     [0.738181366836224, 0.3389203747353555, 0.4920200816404332] | ||||
|     ]; | ||||
| 
 | ||||
|     let matrix2 = [ | ||||
|     [0.7098703863463034, 0.35485944251238033, 0.7642849892333241, 0.03046174288491077], | ||||
| 	[-0.30655426258144347, 0.45509633551425077, -0.5013795222004322, -0.3421292736637427] | ||||
|     ]; | ||||
| 
 | ||||
|     let input = [ | ||||
|     [ 0.1,  0.05], | ||||
|     [ 0.0, -0.06], | ||||
|     [ 0.99, 0.85], | ||||
|     [ 1.2,  1.05] | ||||
|     ]; | ||||
|     let output = [ | ||||
|     [1, 0], | ||||
|     [1, 0], | ||||
|     [0, 1], | ||||
|     [0, 1] | ||||
|     ]; | ||||
| 
 | ||||
| 	let nn1 = NN.Network.Create(2, 3, 2); | ||||
| 	nn1.Layers[0].Forward.Matrix = matrix1; | ||||
| 	nn1.Layers[1].Forward.Matrix = matrix2; | ||||
| 	nn1.LearningRate = 0.1; | ||||
| 	//let logLayers = inNN => inNN.Layers.forEach(L=>console.log(L.Forward.Matrix)); | ||||
| 
 | ||||
| 	NN.Network.Batch(nn1, {Input:input, Output:output}, 1000); | ||||
| 	console.log(NN.Network.Observe(nn1, input)); | ||||
| 
 | ||||
| </script> | ||||
							
								
								
									
										54
									
								
								m.js
									
									
									
									
									
								
							
							
						
						
									
										54
									
								
								m.js
									
									
									
									
									
								
							| @ -1,54 +0,0 @@ | ||||
| const M = | ||||
| { | ||||
|     Iterate: | ||||
|     { | ||||
|         New(inDimensions, inCount, inFunction) | ||||
|         { | ||||
|             let row, i, outputCloud, outputVector; | ||||
|             outputCloud = []; | ||||
|             for(row=0; row<inCount; row++) | ||||
|             { | ||||
|                 outputVector = []; | ||||
|                 for(i=0; i<inDimensions; i++) | ||||
|                 { | ||||
|                     outputVector.push(inFunction(i, row, outputVector)); | ||||
|                 } | ||||
|                 outputCloud.push(outputVector); | ||||
|             } | ||||
|             return outputCloud; | ||||
|         }, | ||||
|         Old(inCloud, inFunction) | ||||
|         { | ||||
|             return M.Iterate.New(inCloud[0].length, inCloud.length, inFunction); | ||||
|         } | ||||
|     }, | ||||
|     Create: | ||||
|     { | ||||
|               Box: (inV1, inV2, inCount)=> M.Iterate.New(inV1.length,    inCount,           (i, row)=> inV1[i]+(inV2[i]-inV1[i])*Math.random()), | ||||
|         Transpose:             (inCloud)=> M.Iterate.New(inCloud.length, inCloud[0].length, (i, row)=> inCloud[i][row]), | ||||
|             Outer:          (inV1, inV2)=> M.Iterate.New(inV1.length,    inV2.length,       (i, row)=> inV1[i]*inV2[row]), | ||||
|             Clone:             (inCloud)=> M.Iterate.Old(inCloud,                           (i, row)=> inCloud[row][i]) | ||||
|     }, | ||||
|     Mutate: | ||||
|     { | ||||
|           Pad: inCloud=> inCloud.forEach(row=> row.push(1)), | ||||
|         Unpad: inCloud=> inCloud.forEach(row=> row.pop()) | ||||
|     }, | ||||
|     Single: | ||||
|     { | ||||
|         Subtract:    (inV1, inV2)=> inV1.map((component, i)=> component-inV2[i]), | ||||
|         Multiply:    (inV1, inV2)=> inV1.map((component, i)=> component*inV2[i]), | ||||
|           Affine: (inV, inMatrix)=> inMatrix.map(row=> row.reduce((sum, current, index)=> sum + current*inV[index])) | ||||
|     }, | ||||
|     Batch: | ||||
|     { | ||||
|           Subtract: (inCloud1, inCloud2)=> inCloud1.map((row, rowIndex)=> M.Single.Subtract(row, inCloud2[rowIndex])), | ||||
|           Multiply: (inCloud1, inCloud2)=> inCloud1.map((row, rowIndex)=> M.Single.Multiply(row, inCloud2[rowIndex])), | ||||
|             Affine:  (inCloud, inMatrix)=> inCloud.map(row=> M.Single.Affine(row, inMatrix)), | ||||
|            Sigmoid:            (inCloud)=> M.Iterate.Old(inCloud, i=>1/(1+Math.Pow(Math.E, i))), | ||||
|         Derivative:            (inCloud)=> M.Iterate.Old(inCloud, i=>i*(1-i)), | ||||
|              Scale:  (inCloud, inScalar)=> M.Iterate.Old(inCloud, i=>i*inScalar) | ||||
|     } | ||||
| } | ||||
| 
 | ||||
| export default M; | ||||
							
								
								
									
										119
									
								
								m.test.js
									
									
									
									
									
								
							
							
						
						
									
										119
									
								
								m.test.js
									
									
									
									
									
								
							| @ -1,62 +1,67 @@ | ||||
| import { assert, assertEquals } from "https://deno.land/std@0.102.0/testing/asserts.ts"; | ||||
| import { default as M } from "./m.js"; | ||||
| import M from "./m.ts"; | ||||
| 
 | ||||
| Deno.test("Iterate.New", ()=> | ||||
| Deno.test("Iterate.Loop", ()=> | ||||
| { | ||||
|     let dimensions = 3; | ||||
|     let count = 4; | ||||
|     let cloud = M.Iterate.New(dimensions, count, (i, j)=>i+j); | ||||
|     const dimensions = 3; | ||||
|     const count = 4; | ||||
|     const cloud = M.Iterate.Loop(dimensions, count, (i, j)=>i+j); | ||||
|     assertEquals(cloud.length, count, "correct count"); | ||||
|     assertEquals(cloud[0].length, dimensions, "correct dimensions"); | ||||
|     assertEquals(cloud[0][0], 0); | ||||
|     assertEquals(cloud[3][2], 5, "correct output"); | ||||
| }); | ||||
| Deno.test("Iterate.Edit", ()=> | ||||
| { | ||||
|     const c = [[1, 2], [3, 4]] | ||||
|     const t = M.Iterate.Edit(c, (i)=>i); | ||||
|     assertEquals(t.length, c.length, "correct count"); | ||||
|     assertEquals(t[0][0], c[0][0], "correct dimensions"); | ||||
|     assertEquals(t[1][1], c[1][1], "correct placement"); | ||||
| }); | ||||
| 
 | ||||
| Deno.test("Create.Box", ()=> | ||||
| { | ||||
|     let min = [-1, -2, -3]; | ||||
|     let max = [1, 2, 3]; | ||||
|     let count = 10; | ||||
|     const min = [-1, -2, -3]; | ||||
|     const max = [1, 2, 3]; | ||||
|     const count = 10; | ||||
| 
 | ||||
|     let box = M.Create.Box(min, max, count); | ||||
|     const box = M.Create.Box(min, max, count); | ||||
|     assertEquals(box.length, count, "correct count"); | ||||
|     for(let i=0; i<box.length; i++) | ||||
|     { | ||||
|         assertEquals(box[i].length, min.length, "correct dimensions"); | ||||
|         for(let j=0; j<box[i].length; j++) | ||||
|         { | ||||
|             assert(box[i][j] >= min[j], true); | ||||
|             assert(box[i][j] <= max[j], true, "correct range"); | ||||
|             assert(box[i][j] >= min[j]); | ||||
|             assert(box[i][j] <= max[j], "correct range"); | ||||
|         } | ||||
|     } | ||||
| }); | ||||
| 
 | ||||
| Deno.test("Create.Transpose", ()=> | ||||
| { | ||||
|     let v1 = [1, 2, 3]; | ||||
|     let v2 = [4, 5, 6]; | ||||
|     let tpose = M.Create.Transpose([v1, v2]); | ||||
|     const v1 = [1, 2, 3]; | ||||
|     const v2 = [4, 5, 6]; | ||||
|     const tpose = M.Create.Transpose([v1, v2]); | ||||
|     assertEquals(tpose.length, 3, "correct count"); | ||||
|     assertEquals(tpose[0].length, 2, "correct dimensions"); | ||||
|     assertEquals(tpose[0][0], v1[0]); | ||||
|     assertEquals(tpose[0][1], v2[0], "correct placement"); | ||||
| }); | ||||
| 
 | ||||
| Deno.test("Create.Outer", ()=> | ||||
| { | ||||
|     let v1 = [1, 2, 3]; | ||||
|     let v2 = [4, 5]; | ||||
|     let outer = M.Create.Outer(v1, v2); | ||||
|     const v1 = [1, 2, 3]; | ||||
|     const v2 = [4, 5]; | ||||
|     const outer = M.Create.Outer(v1, v2); | ||||
|     assertEquals(outer.length, v2.length, "correct count"); | ||||
|     assertEquals(outer[0].length, v1.length, "correct dimensions"); | ||||
|     assertEquals(outer[1][0], v1[0]*v2[1], "correct placement") | ||||
| }); | ||||
| 
 | ||||
| Deno.test("Create.Clone", ()=> | ||||
| { | ||||
|     let v1 = [1, 2, 3]; | ||||
|     let v2 = [4, 5, 6]; | ||||
|     let clone = M.Create.Clone([v1, v2]); | ||||
|     const v1 = [1, 2, 3]; | ||||
|     const v2 = [4, 5, 6]; | ||||
|     const clone = M.Create.Clone([v1, v2]); | ||||
|     assertEquals(clone.length, 2, "correct count"); | ||||
|     assertEquals(clone[0].length, v1.length, "correct dimensions"); | ||||
|     assertEquals(clone[1][0], v2[0], "correct placement"); | ||||
| @ -64,7 +69,7 @@ Deno.test("Create.Clone", ()=> | ||||
| 
 | ||||
| Deno.test("Mutate.Pad", ()=> | ||||
| { | ||||
|     let matrix = [ | ||||
|     const matrix = [ | ||||
|         [1, 2, 3], | ||||
|         [4, 5, 6] | ||||
|     ]; | ||||
| @ -73,10 +78,9 @@ Deno.test("Mutate.Pad", ()=> | ||||
|     assertEquals(matrix[0].length, 4, "correct dimensions"); | ||||
|     assertEquals(matrix[0][3], 1, "correct placement"); | ||||
| }); | ||||
| 
 | ||||
| Deno.test("Mutate.Unpad", ()=> | ||||
| { | ||||
|     let matrix = [ | ||||
|     const matrix = [ | ||||
|         [1, 2, 3, 1], | ||||
|         [4, 5, 6, 1] | ||||
|     ]; | ||||
| @ -88,53 +92,74 @@ Deno.test("Mutate.Unpad", ()=> | ||||
| 
 | ||||
| Deno.test("Single.Affine", ()=> | ||||
| { | ||||
|     let v = [1, 2]; | ||||
|     let m = [[0.1, 0.2], [0.3, 0.4]]; | ||||
|     let t = M.Single.Affine(v, m); | ||||
|     const v = [1, 2]; | ||||
|     const m = [[0.1, 0.2], [0.3, 0.4]]; | ||||
|     const t = M.Single.Affine(v, m); | ||||
|     assertEquals(t.length, 2, "correct dimensions"); | ||||
|     assertEquals(t[0], 0.5) | ||||
|     assertEquals(t[1], 1.1, "correct placement"); | ||||
|     console.log(t); | ||||
| }); | ||||
| 
 | ||||
| Deno.test("Single.Subtract", ()=> | ||||
| { | ||||
|     let v1 = [1, 2]; | ||||
|     let v2 = [3, 4]; | ||||
|     let t = M.Single.Subtract(v1, v2); | ||||
|     const v1 = [1, 2]; | ||||
|     const v2 = [3, 4]; | ||||
|     const t = M.Single.Subtract(v1, v2); | ||||
|     assertEquals(t.length, 2, "correct dimensions"); | ||||
|     assertEquals(t[0], -2) | ||||
|     assertEquals(t[1], -2, "correct placement"); | ||||
| }); | ||||
| 
 | ||||
| Deno.test("Single.Multiply", ()=> | ||||
| { | ||||
|     let v1 = [1, 2]; | ||||
|     let v2 = [3, 4]; | ||||
|     let t = M.Single.Multiply(v1, v2); | ||||
|     const v1 = [1, 2]; | ||||
|     const v2 = [3, 4]; | ||||
|     const t = M.Single.Multiply(v1, v2); | ||||
|     assertEquals(t.length, 2, "correct dimensions"); | ||||
|     assertEquals(t[0], 3) | ||||
|     assertEquals(t[1], 8, "correct placement"); | ||||
| }); | ||||
| 
 | ||||
| 
 | ||||
| 
 | ||||
| Deno.test("Batch.Affine", ()=> | ||||
| { | ||||
|     let c = [[1, 2], [3, 4]]; | ||||
|     let m = [[0.1, 0.2], [0.3, 0.4]]; | ||||
|     let t = M.Batch.Affine(c, m); | ||||
|     const c = [[1, 2], [3, 4]]; | ||||
|     const m = [[0.1, 0.2], [0.3, 0.4]]; | ||||
|     const t = M.Batch.Affine(c, m); | ||||
|     assertEquals(t.length, 2, "correct count"); | ||||
|     assertEquals(t[0].length, 2, "correct dimensions") | ||||
|     assertEquals(t[0][1], 1.1, "correct placement"); | ||||
| }); | ||||
| 
 | ||||
| Deno.test("Batch.Scale", ()=> | ||||
| { | ||||
|     let c = [[1, 2], [3, 4]]; | ||||
|     let s = 0.5; | ||||
|     let t = M.Batch.Scale(c, s); | ||||
|     const c = [[1, 2], [3, 4]]; | ||||
|     const s = 0.5; | ||||
|     const t = M.Batch.Scale(c, s); | ||||
|     assertEquals(t.length, 2, "correct count"); | ||||
|     assertEquals(t[0].length, 2, "correct dimensions"); | ||||
|     console.log(t); | ||||
|     assertEquals(t[1][0], 1.5, "correct placement"); | ||||
| }); | ||||
| Deno.test("Batch.Subtract", ()=> | ||||
| { | ||||
|     const c = [[1, 2], [3, 4]]; | ||||
|     const s = [[0.5, 0.5], [0.5, 0.5]]; | ||||
|     const t = M.Batch.Subtract(c, s); | ||||
|     assertEquals(t.length,    2,   "correct count"); | ||||
|     assertEquals(t[0].length, 2,   "correct dimensions"); | ||||
|     assertEquals(t[1][0],     2.5, "correct placement"); | ||||
| }); | ||||
| Deno.test("Batch.Sigmoid", ()=> | ||||
| { | ||||
|     const m = [[-1000, 1000]]; | ||||
|     const t = M.Batch.Sigmoid(m); | ||||
|     assertEquals(t.length, 1, "correct count"); | ||||
|     assertEquals(t[0].length, 2, "correct dimensions"); | ||||
|     assert(t[0][0]>=0 && t[0][0]<0.5); | ||||
|     assert(t[0][1]<=1 && t[0][1]>0.5, "correct placement"); | ||||
| }); | ||||
| Deno.test("Batch.Derivative", ()=> | ||||
| { | ||||
|     const m = [[-1000, 0, 1000]]; | ||||
|     const t = M.Batch.Derivative(M.Batch.Sigmoid(m)); | ||||
|     assertEquals(t.length, 1, "correct count"); | ||||
|     assertEquals(t[0].length, 3, "correct dimensions"); | ||||
|     assert(t[0][0]<t[0][1] && t[0][1]>t[0][2]); | ||||
| }); | ||||
							
								
								
									
										67
									
								
								m.ts
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										67
									
								
								m.ts
									
									
									
									
									
										Normal file
									
								
							| @ -0,0 +1,67 @@ | ||||
| export namespace Cloud | ||||
| { | ||||
|     export type V = Array<number> | ||||
|     export type M = Array<Array<number>> | ||||
|     export type HandleLoop = (indexComponent:number, indexRow:number, array:Array<number>) => number | ||||
|     export type HandleEdit = (component:number, index:number, array:Array<number>) => number | ||||
| }; | ||||
| 
 | ||||
| const Methods = { | ||||
|     Iterate: | ||||
|     { | ||||
|         Loop: (inDimensions:number, inCount:number, inFunction:Cloud.HandleLoop):Cloud.M => | ||||
|         { | ||||
|             let i:number, j:number, outputVector:Cloud.V; | ||||
|             const outputCloud:Cloud.M = []; | ||||
|             for(i=0; i<inCount; i++) | ||||
|             { | ||||
|                 outputVector = []; | ||||
|                 for(j=0; j<inDimensions; j++) | ||||
|                 { | ||||
|                     outputVector.push(inFunction(j, i, outputVector)); | ||||
|                 } | ||||
|                 outputCloud.push(outputVector); | ||||
|             } | ||||
|             return outputCloud; | ||||
|         }, | ||||
|         Edit: (inCloud:Cloud.M, inFunction:Cloud.HandleEdit):Cloud.M=> inCloud.map((row:Cloud.V):Cloud.V=>row.map(inFunction)) | ||||
|     }, | ||||
|     Create: | ||||
|     { | ||||
|               Box: (inV1:Cloud.V, inV2:Cloud.V, inCount:number):Cloud.M=> Methods.Iterate.Loop(inV1.length, inCount, i=> inV1[i]+(inV2[i]-inV1[i])*Math.random()), | ||||
|         Transpose:                            (inCloud:Cloud.M):Cloud.M=> Methods.Iterate.Loop(inCloud.length, inCloud[0].length, (i, row)=> inCloud[i][row]), | ||||
|             Outer:                 (inV1:Cloud.V, inV2:Cloud.V):Cloud.M=> Methods.Iterate.Loop(inV1.length, inV2.length, (i, row)=> inV1[i]*inV2[row]), | ||||
|             Clone:                            (inCloud:Cloud.M):Cloud.M=> Methods.Iterate.Edit(inCloud, i=> i) | ||||
|     }, | ||||
|     Mutate: | ||||
|     { | ||||
|           Pad: (inCloud:Cloud.M):Cloud.M=> {inCloud.forEach((row:Cloud.V)=> row.push(1)); return inCloud; }, | ||||
|         Unpad: (inCloud:Cloud.M):Cloud.M=> {inCloud.forEach((row:Cloud.V)=> row.pop());   return inCloud; } | ||||
|     }, | ||||
|     Test: | ||||
|     { | ||||
|         Dot:(v1:Cloud.V, v2:Cloud.V):number=>  | ||||
|         { | ||||
|             return v1.reduce((sum, current, index)=> sum + current*v2[index]); | ||||
|         } | ||||
|     }, | ||||
|     Single: | ||||
|     { | ||||
|         Subtract:    (inV1:Cloud.V, inV2:Cloud.V):Cloud.V=> inV1.map((component, i)=> component-inV2[i]), | ||||
|         Multiply:    (inV1:Cloud.V, inV2:Cloud.V):Cloud.V=> inV1.map((component, i)=> component*inV2[i]), | ||||
|           Affine: (inV:Cloud.V, inMatrix:Cloud.M):Cloud.V=> inMatrix.map((row:Cloud.V)=> row.reduce((sum, current, index)=> sum + current*inV[index], 0)) | ||||
|     }, | ||||
|     Batch: | ||||
|     { | ||||
|           Subtract: (inCloud1:Cloud.M, inCloud2:Cloud.M):Cloud.M=> inCloud1.map((row:Cloud.V, rowIndex:number)=> Methods.Single.Subtract(row, inCloud2[rowIndex])), | ||||
|           Multiply: (inCloud1:Cloud.M, inCloud2:Cloud.M):Cloud.M=> inCloud1.map((row:Cloud.V, rowIndex:number)=> Methods.Single.Multiply(row, inCloud2[rowIndex])), | ||||
|             Affine: (inCloud1:Cloud.M, inCloud2:Cloud.M):Cloud.M=> inCloud1.map((row:Cloud.V)=> Methods.Single.Affine(row, inCloud2)), | ||||
|            Sigmoid:                    (inCloud:Cloud.M):Cloud.M=> Methods.Iterate.Edit(inCloud, i=>1/(1+Math.pow(Math.E, -i))), | ||||
|         Derivative:                    (inCloud:Cloud.M):Cloud.M=> Methods.Iterate.Edit(inCloud, i=>i*(1-i)), | ||||
|              Scale:   (inCloud:Cloud.M, inScalar:number):Cloud.M=> Methods.Iterate.Edit(inCloud, i=>i*inScalar) | ||||
|     } | ||||
| }; | ||||
| 
 | ||||
| 
 | ||||
| 
 | ||||
| export default Methods; | ||||
| @ -7,8 +7,8 @@ pad(inCloud) // done | ||||
| unpad(inCloud) // done | ||||
| 
 | ||||
| transform(inCloud, inMatrix) // done | ||||
| sigmoid(inCloud) // 1/(1+e^x) // | ||||
| derivative(inCloud) // x*(1-x) // | ||||
| scale(inCloud1, inV) // | ||||
| sigmoid(inCloud) // 1/(1+e^x) // done | ||||
| derivative(inCloud) // x*(1-x) // done | ||||
| scale(inCloud1, inV) // done | ||||
| subtract(inCloud1, inCloud2) // done | ||||
| multiply(inCloud1, inCloud2) // done | ||||
							
								
								
									
										52
									
								
								nn.test.js
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										52
									
								
								nn.test.js
									
									
									
									
									
										Normal file
									
								
							| @ -0,0 +1,52 @@ | ||||
| import { assert, assertEquals } from "https://deno.land/std@0.102.0/testing/asserts.ts"; | ||||
| import { Split, Build, Label, Learn, Check } from "./nn.ts"; | ||||
| 
 | ||||
| let data = [ | ||||
|     [ 0.10,  0.05, 0, 1], | ||||
|     [ 0.00, -0.06, 0, 1], | ||||
|     [ 0.99,  0.85, 1, 0], | ||||
|     [ 1.20,  1.05, 1, 0] | ||||
| ]; | ||||
| let columns = [2, 3]; | ||||
| let input, output; | ||||
| let layers = []; | ||||
| 
 | ||||
| Deno.test("NN.Split", ()=> | ||||
| { | ||||
|     [input, output] = Split(data, columns); | ||||
|     assert(input); | ||||
|     assert(output); | ||||
|     assertEquals(input.length, output.length, "data split into equal input and output"); | ||||
| 
 | ||||
|     assertEquals(input[0].length, 3, "padded input"); | ||||
|     assertEquals(output[0].length, 2, "unpadded output"); | ||||
| }); | ||||
| 
 | ||||
| Deno.test("NN.Build", ()=> | ||||
| { | ||||
|     layers = Build(2, 5, 2); | ||||
| 
 | ||||
|     assertEquals(layers.length, 2, "correct number of matrices"); | ||||
|     assertEquals(layers[0][0].length, input[0].length, "input: padded input"); | ||||
|     assertEquals(layers[0].length, 5, "input: unpadded output"); | ||||
| 
 | ||||
|     assertEquals(layers[1][0].length, 6, "hidden: padded input"); | ||||
|     assertEquals(layers[1].length, output[0].length, "hidden: unpadded output"); | ||||
| }); | ||||
| 
 | ||||
| Deno.test("NN.Label", ()=> | ||||
| { | ||||
|     let labels = Label(input, layers); | ||||
|     assertEquals(labels.length, output.length); | ||||
|     assertEquals(labels[0].length, output[0].length); | ||||
| }); | ||||
| 
 | ||||
| Deno.test("NN.Learn", ()=> | ||||
| { | ||||
|     let error = Learn(input, layers, output, 1000, 0.1); | ||||
|     assertEquals(error.length, output.length); | ||||
|     let total = 0; | ||||
|     let count = error.length*error[0].length; | ||||
|     error.forEach(row=> row.forEach(component=> total+=Math.abs(component))); | ||||
|     assert(total/count < 0.3); | ||||
| }); | ||||
							
								
								
									
										78
									
								
								nn.ts
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										78
									
								
								nn.ts
									
									
									
									
									
										Normal file
									
								
							| @ -0,0 +1,78 @@ | ||||
| import { default as M, Cloud } from "./m.ts"; | ||||
| export type N = Array<Array<Array<number>>> | ||||
| 
 | ||||
| const Forward = (inData:Cloud.M, inLayers:N):N => | ||||
| { | ||||
|     let i:number; | ||||
|     let stages:N = [inData]; | ||||
|     let process = (index:number):Cloud.M => M.Batch.Sigmoid(M.Batch.Affine(stages[index], inLayers[index])); | ||||
| 
 | ||||
|     for(i=0; i<inLayers.length-1; i++){ stages[i+1] = M.Mutate.Pad(process(i)); } | ||||
|     stages[i+1] = process(i); | ||||
|     return stages; | ||||
| }; | ||||
| const Backward = (inStages:N, inLayers:N, inGoals:Cloud.M, inRate:number):N => | ||||
| { | ||||
|     let i:number; | ||||
|     let errorBack:Cloud.M = M.Batch.Subtract(inStages[inStages.length-1], inGoals); | ||||
| 
 | ||||
|     for(i=inLayers.length-1; i>=0; i--) | ||||
|     { | ||||
|         let errorScaled:Cloud.M = M.Batch.Multiply(errorBack, M.Batch.Derivative(inStages[i+1])); | ||||
|         errorBack = M.Batch.Affine(errorScaled, M.Create.Transpose(inLayers[i])); | ||||
|         errorScaled.forEach((inScaledError:Cloud.V, inIndex:number)=> | ||||
|         { | ||||
|             inLayers[i] = M.Batch.Subtract( | ||||
|                 inLayers[i], | ||||
|                 M.Batch.Scale(M.Create.Outer(inStages[i][inIndex], inScaledError), inRate) | ||||
|             ); | ||||
|         }); | ||||
|     } | ||||
|     return inLayers; | ||||
| }; | ||||
| const Split = (inTrainingSet:Cloud.M, inHeaderLabel:Cloud.V, inHeaderKeep:Cloud.V = []):N => | ||||
| { | ||||
|     let data:Cloud.M = []; | ||||
|     let label:Cloud.M = []; | ||||
|     if(!inHeaderKeep.length) | ||||
|     { | ||||
|         inTrainingSet[0].forEach( (item:number, index:number)=> inHeaderLabel.includes(index) ? false : inHeaderKeep.push(index) ); | ||||
|     } | ||||
|     inTrainingSet.forEach((row:Cloud.V):void => | ||||
|     { | ||||
|         let vectorData = [ ...inHeaderKeep.map((i:number)=>row[i]), 1]; | ||||
|         let vectorLabel = inHeaderLabel.map((i:number)=>row[i])  | ||||
|          data.push( vectorData ); | ||||
|         label.push( vectorLabel ); | ||||
|     }); | ||||
|     return [ data, label ]; | ||||
| }; | ||||
| const Build = (...inLayers:Array<number>):N => | ||||
| { | ||||
|     let i:number; | ||||
|     let output:N = []; | ||||
|     let rand = (inDimensions:number, inCount:number):Cloud.M => M.Create.Box( new Array(inDimensions).fill(-1), new Array(inDimensions).fill(1), inCount); | ||||
|     for(i=0; i<inLayers.length-1; i++) | ||||
|     { | ||||
|         output.push(rand( inLayers[i]+1, inLayers[i+1])); | ||||
|     } | ||||
|     return output; | ||||
| }; | ||||
| const Label = (inData:Cloud.M, inLayers:N):Cloud.M => | ||||
| { | ||||
|     let stages:N = Forward(inData, inLayers); | ||||
|     return stages[stages.length-1]; | ||||
| }; | ||||
| const Learn = (inData:Cloud.M, inLayers:N, inLabels:Cloud.M, inIterations:number, inRate:number):Cloud.M => | ||||
| { | ||||
|     let stages:N = []; | ||||
|     for(let i=0; i<inIterations; i++) | ||||
|     { | ||||
|         stages = Forward(inData, inLayers); | ||||
|         Backward(stages, inLayers, inLabels, inRate); | ||||
|     } | ||||
|     return M.Batch.Subtract(stages[stages.length-1], inLabels); | ||||
| }; | ||||
| const Check = (inData:Cloud.M, inLayers:N, inLabels:Cloud.M):Cloud.M => Learn(inData, inLayers, inLabels, 1, 0); | ||||
| 
 | ||||
| export { Split, Build, Label, Learn, Check, Forward, Backward }; | ||||
		Loading…
	
		Reference in New Issue
	
	Block a user