network #1
@ -709,7 +709,10 @@ NN.Network.Stochastic = function(inNetwork, inTrainingSet, inIterations)
|
||||
|
||||
let stage1 = NN.Layer.Forward(layer1, typeA);
|
||||
let stage1Error = NN.Layer.Error(layer1, goals);
|
||||
let stage1Back = NN.Layer.Backward(layer1, stage1Error);
|
||||
|
||||
console.log(stage1Error);
|
||||
console.log("matrix before", layer1.Forward.Matrix);
|
||||
NN.Layer.Adjust(layer1, 0.1);
|
||||
console.log("matrix after", layer1.Forward.Matrix);
|
||||
|
||||
</script>
|
5
nn.ts
5
nn.ts
@ -34,8 +34,6 @@ const Backward = (inStages:N, inLayers:N, inGoals:Cloud.M, inRate:number):N =>
|
||||
let i:number;
|
||||
let errorBack:Cloud.M = M.Batch.Subtract(inStages[inStages.length-1], inGoals);
|
||||
|
||||
console.log(errorBack);
|
||||
|
||||
for(i=inLayers.length-1; i>=0; i--)
|
||||
{
|
||||
let layerInput:Cloud.M = inStages[i];
|
||||
@ -43,12 +41,15 @@ const Backward = (inStages:N, inLayers:N, inGoals:Cloud.M, inRate:number):N =>
|
||||
let errorScaled:Cloud.M = M.Batch.Multiply(errorBack, M.Batch.Derivative(layerOutput));
|
||||
|
||||
errorBack = M.Batch.Affine(errorScaled, M.Create.Transpose(inLayers[i]));
|
||||
console.log("matrix before:", inLayers[i]);
|
||||
|
||||
errorScaled.forEach((inScaledError:Cloud.V, inIndex:number)=> {
|
||||
const deltas = M.Batch.Scale(M.Create.Outer(layerInput[inIndex], inScaledError), inRate);
|
||||
inLayers[i] = M.Batch.Subtract(inLayers[i], deltas);
|
||||
});
|
||||
|
||||
console.log("matrix after:", inLayers[i]);
|
||||
|
||||
}
|
||||
return inLayers;
|
||||
};
|
||||
|
Loading…
Reference in New Issue
Block a user