network tests passing
This commit is contained in:
		
							parent
							
								
									68aafafc0d
								
							
						
					
					
						commit
						20e27bcb17
					
				
							
								
								
									
										135
									
								
								nn.test.js
									
									
									
									
									
								
							
							
						
						
									
										135
									
								
								nn.test.js
									
									
									
									
									
								
							| @ -1,113 +1,52 @@ | ||||
| import { assert, assertEquals } from "https://deno.land/std@0.102.0/testing/asserts.ts"; | ||||
| import { Split, Forward, Backward } from "./nn.ts"; | ||||
| import { default as M } from "./m.ts"; | ||||
| import { default as Methods } from "./m.ts"; | ||||
| import { Split, Build, Label, Learn, Check } from "./nn.ts"; | ||||
| 
 | ||||
| let training = []; | ||||
| let stages = []; | ||||
| let data = [ | ||||
|     [ 0.10,  0.05, 0, 1], | ||||
|     [ 0.00, -0.06, 0, 1], | ||||
|     [ 0.99,  0.85, 1, 0], | ||||
|     [ 1.20,  1.05, 1, 0] | ||||
| ]; | ||||
| let columns = [2, 3]; | ||||
| let input, output; | ||||
| let layers = []; | ||||
| 
 | ||||
| let typeA = [ | ||||
|     [ 0.1,  0.05], | ||||
|     [ 0.0, -0.06] | ||||
| ]; | ||||
| let typeB = [ | ||||
|     [ 0.99, 0.85], | ||||
|     [ 1.2,  1.05] | ||||
| ]; | ||||
| 
 | ||||
| 
 | ||||
| Deno.test("check forward/backward", ()=> | ||||
| { | ||||
|     let matrix1 = [ | ||||
|     [-0.43662948305036675, -0.368590640707799, -0.23227179558890843], | ||||
|     [-0.004292653969505622, 0.38670055222186317, -0.2478421495365568], | ||||
|     [0.738181366836224, 0.3389203747353555, 0.4920200816404332] | ||||
|     ]; | ||||
| 
 | ||||
|     let matrix2 = [ | ||||
|     [0.7098703863463034, 0.35485944251238033, 0.7642849892333241, 0.03046174288491077], | ||||
|     [-0.30655426258144347, 0.45509633551425077, -0.5013795222004322, -0.3421292736637427] | ||||
|     ]; | ||||
| 
 | ||||
|     let input = [ | ||||
|     [ 0.1,  0.05], | ||||
|     [ 0.0, -0.06], | ||||
|     [ 0.99, 0.85], | ||||
|     [ 1.2,  1.05] | ||||
|     ]; | ||||
|     let output = [ | ||||
|     [1, 0], | ||||
|     [1, 0], | ||||
|     [0, 1], | ||||
|     [0, 1] | ||||
|     ]; | ||||
| 
 | ||||
|     let layers = [matrix1, matrix2]; | ||||
|     let stages = []; | ||||
|     for(let i=0; i<1000; i++) | ||||
|     { | ||||
|         stages = Forward(Methods.Mutate.Pad(input), layers); | ||||
|         Backward(stages, layers, output, 0.1); | ||||
|     } | ||||
| 
 | ||||
|     stages = Forward(input, layers); | ||||
|     console.log(stages[stages.length-1]); | ||||
| }); | ||||
| 
 | ||||
| Deno.test("NN.Split", ()=> | ||||
| { | ||||
|     let data = [ | ||||
|         [3, 2, 1, 0, 1], | ||||
|         [6, 5, 4, 1, 0] | ||||
|     ] | ||||
|     let split = Split(data, [3, 4]); | ||||
|     console.log(split); | ||||
|     [input, output] = Split(data, columns); | ||||
|     assert(input); | ||||
|     assert(output); | ||||
|     assertEquals(input.length, output.length, "data split into equal input and output"); | ||||
| 
 | ||||
|     assertEquals(input[0].length, 3, "padded input"); | ||||
|     assertEquals(output[0].length, 2, "unpadded output"); | ||||
| }); | ||||
| 
 | ||||
| 
 | ||||
| /* | ||||
| Deno.test("NN.Label", ()=> | ||||
| Deno.test("NN.Build", ()=> | ||||
| { | ||||
|     Label(training, typeA, [1, 0]); | ||||
|     Label(training, typeB, [0, 1]); | ||||
|     assertEquals(training.length, 2, "input and output sets created"); | ||||
|     assertEquals(training[0].length, training[1].length, "both sets have same length"); | ||||
|     assertEquals(training[0][0].length, 3, "padded input component"); | ||||
|     assertEquals(training[1][0].length, 2, "unchanged label vector"); | ||||
|     layers = Build(2, 5, 2); | ||||
| 
 | ||||
|     assertEquals(layers.length, 2, "correct number of matrices"); | ||||
|     assertEquals(layers[0][0].length, input[0].length, "input: padded input"); | ||||
|     assertEquals(layers[0].length, 5, "input: unpadded output"); | ||||
| 
 | ||||
|     assertEquals(layers[1][0].length, 6, "hidden: padded input"); | ||||
|     assertEquals(layers[1].length, output[0].length, "hidden: unpadded output"); | ||||
| }); | ||||
| 
 | ||||
| Deno.test("NN.Forward", ()=> | ||||
| { | ||||
|     let layer1 = M.Create.Box([-1, -1, -1], [1, 1, 1], 2); | ||||
|     let layer2 = M.Create.Box([-1, -1, -1], [1, 1, 1], 1); | ||||
|     layers.push(layer1); | ||||
|     layers.push(layer2); | ||||
| 
 | ||||
|     console.log(training[0]); | ||||
|     stages = Forward(training[0], layers); | ||||
|     console.log(stages); | ||||
| }); | ||||
| 
 | ||||
| Deno.test("NN.Backward", ()=> | ||||
| { | ||||
|     let copy1 = M.Create.Clone(layers[0]); | ||||
|     let copy2 = M.Create.Clone(layers[1]); | ||||
| 
 | ||||
|     for(let i=0; i<100; i++) | ||||
|     { | ||||
|         Backward(stages, layers, training[1], 0.1); | ||||
|     } | ||||
| 
 | ||||
|     assert(layers[0][0][0] != copy1[0][0], "first matrix has changed"); | ||||
|     assert(layers[1][0][0] != copy2[0][0], "second matrix has changed"); | ||||
| }); | ||||
| 
 | ||||
| 
 | ||||
| Deno.test("NN.Label", ()=> | ||||
| { | ||||
|     let stages = Forward(training[0], layers); | ||||
|     console.log(stages[stages.length-1]); | ||||
|     let labels = Label(input, layers); | ||||
|     assertEquals(labels.length, output.length); | ||||
|     assertEquals(labels[0].length, output[0].length); | ||||
| }); | ||||
| 
 | ||||
| */ | ||||
| Deno.test("NN.Learn", ()=> | ||||
| { | ||||
|     let error = Learn(input, layers, output, 1000, 0.1); | ||||
|     assertEquals(error.length, output.length); | ||||
|     let total = 0; | ||||
|     let count = error.length*error[0].length; | ||||
|     error.forEach(row=> row.forEach(component=> total+=Math.abs(component))); | ||||
|     assert(total/count < 0.3); | ||||
| }); | ||||
							
								
								
									
										14
									
								
								nn.ts
									
									
									
									
									
								
							
							
						
						
									
										14
									
								
								nn.ts
									
									
									
									
									
								
							| @ -38,10 +38,12 @@ const Split = (inTrainingSet:Cloud.M, inHeaderLabel:Cloud.V, inHeaderKeep:Cloud. | ||||
|     { | ||||
|         inTrainingSet[0].forEach( (item:number, index:number)=> inHeaderLabel.includes(index) ? false : inHeaderKeep.push(index) ); | ||||
|     } | ||||
|     inTrainingSet.forEach((row:Cloud.V) => | ||||
|     inTrainingSet.forEach((row:Cloud.V):void => | ||||
|     { | ||||
|          data.push( [...inHeaderKeep.map((i:number)=>row[i]), 1] ); | ||||
|         label.push( inHeaderLabel.map((i:number)=>row[i]) ); | ||||
|         let vectorData = [ ...inHeaderKeep.map((i:number)=>row[i]), 1]; | ||||
|         let vectorLabel = inHeaderLabel.map((i:number)=>row[i])  | ||||
|          data.push( vectorData ); | ||||
|         label.push( vectorLabel ); | ||||
|     }); | ||||
|     return [ data, label ]; | ||||
| }; | ||||
| @ -54,7 +56,6 @@ const Build = (...inLayers:Array<number>):N => | ||||
|     { | ||||
|         output.push(rand( inLayers[i]+1, inLayers[i+1])); | ||||
|     } | ||||
|     output.push( rand( inLayers[i-1], inLayers[i]) ); | ||||
|     return output; | ||||
| }; | ||||
| const Label = (inData:Cloud.M, inLayers:N):Cloud.M => | ||||
| @ -72,7 +73,6 @@ const Learn = (inData:Cloud.M, inLayers:N, inLabels:Cloud.M, inIterations:number | ||||
|     } | ||||
|     return M.Batch.Subtract(stages[stages.length-1], inLabels); | ||||
| }; | ||||
| const Error = M.Batch.Subtract; | ||||
| const Check = (inData:Cloud.M, inLayers:N, inLabels:Cloud.M):Cloud.M => Learn(inData, inLayers, inLabels, 1, 0); | ||||
| 
 | ||||
| export { Split, Build, Label, Learn, Error, Forward, Backward }; | ||||
| export type { Cloud }; | ||||
| export { Split, Build, Label, Learn, Check, Forward, Backward }; | ||||
		Loading…
	
		Reference in New Issue
	
	Block a user