diff --git a/nn.test.js b/nn.test.js index c5d7e7c..6519caf 100644 --- a/nn.test.js +++ b/nn.test.js @@ -1,113 +1,52 @@ import { assert, assertEquals } from "https://deno.land/std@0.102.0/testing/asserts.ts"; -import { Split, Forward, Backward } from "./nn.ts"; -import { default as M } from "./m.ts"; -import { default as Methods } from "./m.ts"; +import { Split, Build, Label, Learn, Check } from "./nn.ts"; -let training = []; -let stages = []; +let data = [ + [ 0.10, 0.05, 0, 1], + [ 0.00, -0.06, 0, 1], + [ 0.99, 0.85, 1, 0], + [ 1.20, 1.05, 1, 0] +]; +let columns = [2, 3]; +let input, output; let layers = []; -let typeA = [ - [ 0.1, 0.05], - [ 0.0, -0.06] -]; -let typeB = [ - [ 0.99, 0.85], - [ 1.2, 1.05] -]; - - -Deno.test("check forward/backward", ()=> -{ - let matrix1 = [ - [-0.43662948305036675, -0.368590640707799, -0.23227179558890843], - [-0.004292653969505622, 0.38670055222186317, -0.2478421495365568], - [0.738181366836224, 0.3389203747353555, 0.4920200816404332] - ]; - - let matrix2 = [ - [0.7098703863463034, 0.35485944251238033, 0.7642849892333241, 0.03046174288491077], - [-0.30655426258144347, 0.45509633551425077, -0.5013795222004322, -0.3421292736637427] - ]; - - let input = [ - [ 0.1, 0.05], - [ 0.0, -0.06], - [ 0.99, 0.85], - [ 1.2, 1.05] - ]; - let output = [ - [1, 0], - [1, 0], - [0, 1], - [0, 1] - ]; - - let layers = [matrix1, matrix2]; - let stages = []; - for(let i=0; i<1000; i++) - { - stages = Forward(Methods.Mutate.Pad(input), layers); - Backward(stages, layers, output, 0.1); - } - - stages = Forward(input, layers); - console.log(stages[stages.length-1]); -}); - Deno.test("NN.Split", ()=> { - let data = [ - [3, 2, 1, 0, 1], - [6, 5, 4, 1, 0] - ] - let split = Split(data, [3, 4]); - console.log(split); + [input, output] = Split(data, columns); + assert(input); + assert(output); + assertEquals(input.length, output.length, "data split into equal input and output"); + + assertEquals(input[0].length, 3, "padded input"); + assertEquals(output[0].length, 2, "unpadded output"); }); - -/* -Deno.test("NN.Label", ()=> +Deno.test("NN.Build", ()=> { - Label(training, typeA, [1, 0]); - Label(training, typeB, [0, 1]); - assertEquals(training.length, 2, "input and output sets created"); - assertEquals(training[0].length, training[1].length, "both sets have same length"); - assertEquals(training[0][0].length, 3, "padded input component"); - assertEquals(training[1][0].length, 2, "unchanged label vector"); + layers = Build(2, 5, 2); + + assertEquals(layers.length, 2, "correct number of matrices"); + assertEquals(layers[0][0].length, input[0].length, "input: padded input"); + assertEquals(layers[0].length, 5, "input: unpadded output"); + + assertEquals(layers[1][0].length, 6, "hidden: padded input"); + assertEquals(layers[1].length, output[0].length, "hidden: unpadded output"); }); -Deno.test("NN.Forward", ()=> -{ - let layer1 = M.Create.Box([-1, -1, -1], [1, 1, 1], 2); - let layer2 = M.Create.Box([-1, -1, -1], [1, 1, 1], 1); - layers.push(layer1); - layers.push(layer2); - - console.log(training[0]); - stages = Forward(training[0], layers); - console.log(stages); -}); - -Deno.test("NN.Backward", ()=> -{ - let copy1 = M.Create.Clone(layers[0]); - let copy2 = M.Create.Clone(layers[1]); - - for(let i=0; i<100; i++) - { - Backward(stages, layers, training[1], 0.1); - } - - assert(layers[0][0][0] != copy1[0][0], "first matrix has changed"); - assert(layers[1][0][0] != copy2[0][0], "second matrix has changed"); -}); - - Deno.test("NN.Label", ()=> { - let stages = Forward(training[0], layers); - console.log(stages[stages.length-1]); + let labels = Label(input, layers); + assertEquals(labels.length, output.length); + assertEquals(labels[0].length, output[0].length); }); -*/ \ No newline at end of file +Deno.test("NN.Learn", ()=> +{ + let error = Learn(input, layers, output, 1000, 0.1); + assertEquals(error.length, output.length); + let total = 0; + let count = error.length*error[0].length; + error.forEach(row=> row.forEach(component=> total+=Math.abs(component))); + assert(total/count < 0.3); +}); \ No newline at end of file diff --git a/nn.ts b/nn.ts index c7922a7..a09e8a1 100644 --- a/nn.ts +++ b/nn.ts @@ -38,10 +38,12 @@ const Split = (inTrainingSet:Cloud.M, inHeaderLabel:Cloud.V, inHeaderKeep:Cloud. { inTrainingSet[0].forEach( (item:number, index:number)=> inHeaderLabel.includes(index) ? false : inHeaderKeep.push(index) ); } - inTrainingSet.forEach((row:Cloud.V) => + inTrainingSet.forEach((row:Cloud.V):void => { - data.push( [...inHeaderKeep.map((i:number)=>row[i]), 1] ); - label.push( inHeaderLabel.map((i:number)=>row[i]) ); + let vectorData = [ ...inHeaderKeep.map((i:number)=>row[i]), 1]; + let vectorLabel = inHeaderLabel.map((i:number)=>row[i]) + data.push( vectorData ); + label.push( vectorLabel ); }); return [ data, label ]; }; @@ -54,7 +56,6 @@ const Build = (...inLayers:Array):N => { output.push(rand( inLayers[i]+1, inLayers[i+1])); } - output.push( rand( inLayers[i-1], inLayers[i]) ); return output; }; const Label = (inData:Cloud.M, inLayers:N):Cloud.M => @@ -72,7 +73,6 @@ const Learn = (inData:Cloud.M, inLayers:N, inLabels:Cloud.M, inIterations:number } return M.Batch.Subtract(stages[stages.length-1], inLabels); }; -const Error = M.Batch.Subtract; +const Check = (inData:Cloud.M, inLayers:N, inLabels:Cloud.M):Cloud.M => Learn(inData, inLayers, inLabels, 1, 0); -export { Split, Build, Label, Learn, Error, Forward, Backward }; -export type { Cloud }; \ No newline at end of file +export { Split, Build, Label, Learn, Check, Forward, Backward }; \ No newline at end of file