rlang/target.r
2022-05-02 13:52:45 +00:00

301 lines
13 KiB
R

library(plyr)
library(dplyr)
library(ggdistribute)
library(ggplot2)
library(ggExtra)
library(scales)
library(gridExtra)
library(stringr);
library(DBI);
priceg = ".*"
mold = "XTG154"
colgrp = ".*"
branding = ".*"
outlier = 300
xfact = 4
yfact = 5
xtrans = "identity"
ytrans = "identity"
lprice = .01
uprice = 30.00
pqty = 2000
png(filename="target.png")
#prod_plot <- function(priceg, mold, colgrp, branding, outlier, xfact, yfact,xtrans, ytrans, lprice, uprice, pqty ) {
sql = paste("SELECT * FROM rlarp.rlang_plot('",mold,"','",priceg,"','",colgrp,"','",branding,"',",lprice,",",uprice,") x",sep="");
con <- dbConnect(RPostgres::Postgres(),dbname = 'ubm',
host = 'usmidlnx01',
port = 5030,
user = 'report',
password = 'report')
d <- dbGetQuery(con, sql)
dbDisconnect(con)
#-----each graph is composed of 2 pieces when doing the facet() pivot, these 2 pieces make up the plot defition-----
d$f7 <- substring(d$mold,1,7)
#d$dim1 <- trimws(paste(d$f7,d$v1ds));
#d$dim1 <- trimws(paste(d$f7,d$colgrp,d$brnd,d$package,d$suffix,d$kit));
d$dim1 <- trimws(paste(d$base_item,d$colgrp,d$brnd));
d$dim2 <- trimws(paste(d$chgrp));
d$plot <- trimws(paste(d$dim1,d$dim2));
d$sub <- trimws(paste("v1:",d$coltier,".",substring(d$brnd,1,1),".",d$package,".",d$suffix,".",d$kit));
#d$sub <- trimws(paste(d$oseas));
#d$sub <- trimws(paste(d$geo));
d$qty = d$qty/1000;
#-----need to include credits------
d$volmin = 0.0001;
d$season = factor(d$oseas);
#-----build widths for how many scenarios are present----------------------------------------------------------------
dim1 <- data.frame(unique(d$dim1));
var.dim1 = nrow(dim1);
dim2 <- data.frame(unique(d$dim2));
var.dim2 = nrow(dim2);
#-----------need to do an aggregate to consolidate to single customer point
d <- subset(d,chgrp != "X", promo != "Excess and Obsolete");
#-------------------------eliminate outliers-------------------------------------------------------------------------
dx <- boxplot.stats(d$price, coef = outlier);
ex <- data.frame(dx$out);
#ex; #list the excluded outlier prices
colnames(ex)[1] = "price";
outl <- inner_join(d,ex, by = "price");
outl;
d <- anti_join(d,ex, by = "price");
#---------switch to log axis if there are still outliers with a coefficient 3----------------------------------------
var.trans = "identity"
if (nrow(data.frame(boxplot.stats(d$price, coef = 3)$out)) >= 1){
var.trans = "log2"
};
glob <- ddply(d, .(), summarise,
Volume=round(sum(qty),0),
Sales=round(sum(sales),0),
WeightedAvg=round(sum(sales)/sum(qty),4),
Mean=round(mean(price),4),
StdDev=round(sd(price),4),
Target=round(mean(target_price),4),
AnyMax=round(max(c(price,target_price)),4),
AnyMin=round(min(c(price,target_price)),4),
PriceMin = round(min(price),4),
PriceMax = round(max(price),4),
VolumeMin = round(min(pmax(qty,volmin)),4),
VolumeMax = round(max(qty),1),
VolumeSD=round(sd(pmax(qty,volmin)),4)
);
#targets <- ddply(d, .(dim1, dim2, plot,mold,chan,colgrp, brnd), summarise,
targets <- ddply(d, .(dim2, v1ds, dim1, plot,mold,chan,colgrp, brnd), summarise,
Volume=round(sum(qty),0),
Sales=round(sum(sales),0),
WeightedAvg=round(sum(sales)/sum(qty*1000),4),
Mean=round(mean(price),4),
StdDev=round(sd(price),4),
Target=round(mean(target_price),4),
HexCol = min(hex)
);
seas <- ddply(d, .(dim1, dim2, plot, oseas), summarise,
Volume=round(sum(qty),0),
Sales=round(sum(sales),0),
WeightedAvg=round(sum(sales)/sum(qty*1000),4),
Mean=round(mean(price),4),
StdDev=round(sd(price),4),
Target=round(mean(target_price),4)
);
#-----------------blank dataframe in case there is no data for a scenario-----------------
blank <- glob
blank$customer = 'NO DATA'
blank$oseas = 2020
blank$season = '2020'
blank$qty = blank$VolumeSD
blank$price = blank$Mean
#blank;
yr1 <- subset(seas, oseas == 2020);
yr2 <- subset(seas, oseas == 2021);
dir_t <- subset(targets, chan == "DIR");
drp_t <- subset(targets, chan == "DRP");
whs_t <- subset(targets, chan == "WHS");
anno <- data.frame(unique(d[c("plot","dim2","dim1","mold","colgrp","brnd")]));
anno <- data.frame(anno,qty=c(Inf),price=c(Inf),hjustvar = c(1),vjustvar = c(1));
anno <- merge(x = anno, y = yr1[ , c("plot","Mean","WeightedAvg", "StdDev","Volume")], by = "plot", all.x=TRUE);
names(anno)[names(anno)=="Mean"] <- "yr1_mn";
names(anno)[names(anno)=="WeightedAvg"] <- "yr1_wa";
names(anno)[names(anno)=="StdDev"] <- "yr1_sd";
names(anno)[names(anno)=="Volume"] <- "yr1_vo";
anno <- merge(x = anno, y = yr2[ , c("plot","Mean","WeightedAvg", "StdDev","Volume")], by = "plot", all.x=TRUE);
names(anno)[names(anno)=="Mean"] <- "yr2_mn";
names(anno)[names(anno)=="WeightedAvg"] <- "yr2_wa";
names(anno)[names(anno)=="StdDev"] <- "yr2_sd";
names(anno)[names(anno)=="Volume"] <- "yr2_vo";
anno <- merge(x = anno, y = dir_t[ , c("plot","Target")], by = "plot", all.x=TRUE);
names(anno)[names(anno)=="Target"] <- "t_dir";
anno <- merge(x = anno, y = drp_t[ , c("plot","Target")], by = "plot", all.x=TRUE);
names(anno)[names(anno)=="Target"] <- "t_drp";
anno <- merge(x = anno, y = whs_t[ , c("plot","Target")], by = "plot", all.x=TRUE);
names(anno)[names(anno)=="Target"] <- "t_whs";
csv <- anno;
csv <- subset(csv, select = c(mold, dim2, colgrp, brnd, yr1_mn, yr2_mn, yr1_wa, yr2_wa, t_dir, t_drp, t_whs));
csv$t_dir_rev = csv$t_dir;
csv$t_drp_rev = csv$t_drp;
csv$t_whs_rev = csv$t_whs;
names(csv)[names(csv)=="dim2"] <- "chgrp";
csv;
#write.csv(csv, file = paste("//home/ptrowbridge/pt_share/",file_name,"_TRG.csv",sep=""), row.names = FALSE);
p=ggplot(d, aes(x=qty, y=price, color=v1ds)) +
#scale_color_manual(values=c("#F44336", "#E91E63", "#9C27B0","#673ab7","#3f51b5","#2196f3","#03a9f4","#00bcd4","#009688","#4caf50","#8bc34a","#8bc34a","#ffeb3b","#ffc107")) +
geom_point(size=2) +
geom_text(data = anno,
aes(
x=qty,y=price,
color = NULL,
hjust=hjustvar,vjust=vjustvar,
label=paste(
" mean | wavg | stdd | vol \n",
"-------|--------|--------|---------\n",
"PY(black): ",
#----------mean-------------------------------
str_pad(
format(round(yr1_mn, 4), nsmall = 4),
width = 6,
side = "both",
pad = " "),
"|",
#----------weighted average-------------------
str_pad(
format(round(yr1_wa, 4), nsmall = 4),
width = 6,
side = "both",
pad = " "
),
#----------standard deviation-----------------
"|",
str_pad(
format(round(yr1_sd, 4), nsmall = 4),
width = 6,
side = "both",
pad = " "),
"|",
#----------volume-----------------------------
str_pad(
format(round(yr1_vo/1000, 4), nsmall = 4,width = 7),
width = 6,
side = "both",
pad = " "),
"\n",
"CY(green): ",
#----------mean-------------------------------
str_pad(
format(round(yr2_mn, 4), nsmall = 4),
width = 6,
side = "both",
pad = " "),
"|",
#----------weighted average-------------------
str_pad(
format(round(yr2_wa, 4), nsmall = 4),
width = 6,
side = "both",
pad = " "
),
#----------standard deviation-----------------
"|",
str_pad(
format(round(yr2_sd, 4), nsmall = 4),
width = 6,
side = "both",
pad = " "),
"|",
#----------volume-----------------------------
str_pad(
format(round(yr2_vo/1000, 4), nsmall = 4,width = 7),
width = 6,
side = "both",
pad = " "),
"\n",
#format(round(yr2_mn, 4), nsmall = 4),"|",format(round(yr2_wa, 4), nsmall = 4),"|",format(round(yr2_sd, 4), nsmall = 4),"|",format(round(yr2_vo/1000, 4), nsmall = 4,width = 7),"\n",
" \n",
" dir (b) | drp (y) | whs (r) \n",
"-----------|-----------|-----------\n",
"Targets: ",
str_pad(
format(round(t_dir, 4), nsmall = 4),
width = 9,
side ="both",
pad=" "),
"|",
str_pad(
format(round(t_drp, 4), nsmall = 4),
width = 9,
side = "both",
pad = " "),
"|",
str_pad(
format(round(coalesce(t_whs,0), 4), nsmall = 4),
width = 10,
side = "both",
pad = " ")
)
),
family="Courier",
size = 3,
#use check_overlap to avoid doubling up the price info print, it will print over top of itself based on the color=sub count of uniques
check_overlap=TRUE
) +
geom_text(aes(label=customer),size=3, vjust = 2, hjust = 0, check_overlap=TRUE) +
facet_grid(dim2~dim1) +
#facet_grid(chgrp~plot) +
#facet_wrap(plot) +
geom_hline(data=yr1, aes(yintercept=Mean),linetype="dashed", size=.5, colour="black") +
#geom_hline(data=yr1, aes(yintercept=Mean - StdDev),linetype="dashed", size=.5, colour="black") +
#geom_hline(data=yr1, aes(yintercept=Mean - StdDev * 2),linetype="dashed", size=.5, colour="black") +
geom_hline(data=yr1, aes(yintercept=WeightedAvg),linetype="solid", size=.5, colour="black") +
geom_vline(aes(xintercept = pqty/1000) ,linetype = "dashed",size = .5, colour = "orange") +
#geom_vline(aes(xintercept = pqty/1000*8) ,linetype = "dashed",size = .5, colour = "grey") +
geom_vline(aes(xintercept = pqty/1000*8) ,linetype = "dashed",size = .5, colour = "grey") +
#geom_hline(data=yr2, aes(yintercept=Mean),linetype="dashed", size=.5, colour="green") +
#geom_hline(data=yr2, aes(yintercept=Mean - StdDev),linetype="dashed", size=.5, colour="green") +
#geom_hline(data=yr2, aes(yintercept=Mean - StdDev * 2),linetype="dashed", size=.5, colour="green") +
#geom_hline(data=yr2, aes(yintercept=WeightedAvg),linetype="solid", size=.5, colour="green") +
geom_hline(data=drp_t, aes(yintercept=Target, color=v1ds),linetype="solid", size=.5) +
geom_hline(data=dir_t, aes(yintercept=Target, color=v1ds),linetype="solid", size=.5) +
geom_hline(data=whs_t, aes(yintercept=Target, color=v1ds),linetype="solid", size=.5) +
#scale_y_continuous(breaks=seq(0, 10, round(glob$StdDev * .5,2))) +
scale_y_continuous(
#breaks=seq(glob$PriceMin, glob$PriceMax, round(glob$StdDev * .5,4)),
breaks = pretty_breaks(n=20),
limits = c(glob$AnyMin, glob$AnyMax), trans = ytrans
) +
scale_x_continuous(
#breaks=seq(glob$VolumeMin, glob$VolumeMax, round(glob$VolumeSD * 1.0,4)),
#breaks = pretty_breaks(n=10),
limits = c(glob$VolumeMin, glob$VolumeMax*1.1), trans = xtrans
) +
#scale_x_continuous(trans='log2') +
#scale_x_continuous(breaks=seq(0,1000,round(glob$VolumeSD * 1,2)), trans = 'log2') +
#geom_label(colour = "white", fontface = "bold") +
#geom_text(aes(label=ds$ship_group),position = position_dodge(width=.9), size=2) +
theme(legend.position="none");
cp_pvt = p + theme_bw();
#targets;
options(
repr.plot.width=var.dim1*xfact,
repr.plot.height=var.dim2*yfact
);
cp_pvt;
dev.off()
#};