169 lines
4.8 KiB
TypeScript
169 lines
4.8 KiB
TypeScript
#!/usr/bin/env -S deno run --allow-net --allow-write
|
|
|
|
// ------------------------------------------------------------
|
|
// Linear Regression
|
|
// ------------------------------------------------------------
|
|
function linearRegression(xs: number[], ys: number[]) {
|
|
const n = xs.length;
|
|
const meanX = xs.reduce((a, b) => a + b, 0) / n;
|
|
const meanY = ys.reduce((a, b) => a + b, 0) / n;
|
|
|
|
let num = 0;
|
|
let den = 0;
|
|
|
|
for (let i = 0; i < n; i++) {
|
|
num += (xs[i] - meanX) * (ys[i] - meanY);
|
|
den += (xs[i] - meanX) ** 2;
|
|
}
|
|
|
|
if (den === 0) return null; // flat line → no regression possible
|
|
|
|
const slope = num / den;
|
|
const intercept = meanY - slope * meanX;
|
|
|
|
let ssTot = 0;
|
|
let ssRes = 0;
|
|
|
|
for (let i = 0; i < n; i++) {
|
|
const yPred = slope * xs[i] + intercept;
|
|
ssTot += (ys[i] - meanY) ** 2;
|
|
ssRes += (ys[i] - yPred) ** 2;
|
|
}
|
|
|
|
const r2 = ssTot === 0 ? 0 : 1 - ssRes / ssTot;
|
|
|
|
const start = intercept;
|
|
const end = start + slope*xs.length;
|
|
const growth = (end/start) - 1;
|
|
|
|
return { slope, intercept, r2, growth};
|
|
}
|
|
|
|
// ------------------------------------------------------------
|
|
// Fetch S&P 500 tickers
|
|
// ------------------------------------------------------------
|
|
async function fetchSP500Tickers(): Promise<string[]> {
|
|
const url =
|
|
"https://datahub.io/core/s-and-p-500-companies/_r/-/data/constituents.csv";
|
|
|
|
const res = await fetch(url);
|
|
if (!res.ok) throw new Error("Failed to fetch S&P 500 CSV");
|
|
|
|
const csv = await res.text();
|
|
const lines = csv.trim().split("\n");
|
|
lines.shift(); // header
|
|
|
|
return lines.map((line) => line.split(",")[0]);
|
|
}
|
|
|
|
// ------------------------------------------------------------
|
|
// Yahoo Finance fetch
|
|
// ------------------------------------------------------------
|
|
const now = Math.floor(Date.now() / 1000);
|
|
const thirtyDaysAgo = now - 30 * 24 * 60 * 60;
|
|
const args = `?period1=${thirtyDaysAgo}&period2=${now}&interval=1d`;
|
|
const closingEndpoint =(ticker:string)=>`https://query1.finance.yahoo.com/v8/finance/chart/${ticker}${args}`;
|
|
|
|
async function fetchLast30Closes(ticker: string): Promise<number[]> {
|
|
|
|
const res = await fetch(closingEndpoint(ticker));
|
|
if (!res.ok) return [];
|
|
|
|
const json = await res.json();
|
|
const result = json.chart?.result?.[0];
|
|
if (!result) return [];
|
|
|
|
const closes = result.indicators?.quote?.[0]?.close;
|
|
return closes?.filter((x: number | null) => x != null) ?? [];
|
|
}
|
|
|
|
// ------------------------------------------------------------
|
|
// Compute regression for a ticker
|
|
// ------------------------------------------------------------
|
|
async function ComputeTicker(ticker: string) {
|
|
const closes = await fetchLast30Closes(ticker);
|
|
if (closes.length < 5) return null;
|
|
|
|
const xs = closes.map( (_, index) => index );
|
|
const ys = closes;
|
|
|
|
return linearRegression(xs, ys);
|
|
}
|
|
|
|
// ------------------------------------------------------------
|
|
// Concurrency Throttler
|
|
// ------------------------------------------------------------
|
|
async function throttle<T>(
|
|
items: T[],
|
|
limit: number,
|
|
fn: (item: T) => Promise<void>,
|
|
) {
|
|
const queue: Promise<void>[] = [];
|
|
|
|
for (const item of items) {
|
|
const p = fn(item);
|
|
queue.push(p);
|
|
|
|
if (queue.length >= limit) {
|
|
await Promise.race(queue);
|
|
// Remove settled promises
|
|
for (let i = queue.length - 1; i >= 0; i--) {
|
|
if (queue[i].catch(() => {}) && true) queue.splice(i, 1);
|
|
}
|
|
}
|
|
}
|
|
|
|
await Promise.all(queue);
|
|
}
|
|
|
|
// ------------------------------------------------------------
|
|
// Main Dump
|
|
// ------------------------------------------------------------
|
|
async function Dump() {
|
|
const spx = await ComputeTicker("^GSPC");
|
|
|
|
if (!spx) {
|
|
console.error("Could not get S&P Index data");
|
|
return;
|
|
}
|
|
|
|
const rows: string[] = ["ticker,slope,intercept,r2,growth"];
|
|
const addRow = (ticker: string, model: ReturnType<typeof linearRegression>) => {
|
|
rows.push(
|
|
`${ticker},${model.slope.toFixed(6)},${model.intercept.toFixed(6)},${model.r2.toFixed(6)},${model?.growth.toFixed(2)}`,
|
|
);
|
|
};
|
|
|
|
addRow("SPX", spx);
|
|
|
|
const tickers = await fetchSP500Tickers();
|
|
console.log(`${tickers.length} S&P 500 stocks found...`);
|
|
console.log(
|
|
`Finding stocks with slope better than the S&P Index slope (${spx.slope.toFixed(6)})...`,
|
|
);
|
|
|
|
// Throttle to avoid Yahoo soft throttling
|
|
const limit = 5; // adjust as needed
|
|
|
|
await throttle(tickers, limit, async (ticker) => {
|
|
try {
|
|
const model = await ComputeTicker(ticker);
|
|
if (model && model.growth > spx.growth) {
|
|
addRow(ticker, model);
|
|
console.log(`${ticker}`);
|
|
}
|
|
else{
|
|
//console.log("bad: ", ticker, model?.slope)
|
|
}
|
|
} catch (e) {
|
|
console.log(`Skipping "${ticker}" because: ${e}`);
|
|
}
|
|
});
|
|
|
|
await Deno.writeTextFile("sp500_regression.csv", rows.join("\n"));
|
|
console.log("Dumped output to sp500_regression.csv");
|
|
}
|
|
|
|
Dump();
|
|
//console.log(closingEndpoint("^GSPC"))
|