Compare commits
6 Commits
Author | SHA1 | Date | |
---|---|---|---|
3d9b692d4d | |||
9fcfb9115d | |||
44771715d3 | |||
3861d41c83 | |||
b1c95d4819 | |||
94c7abdda5 |
717
index.html
717
index.html
@ -1,717 +0,0 @@
|
||||
<script>
|
||||
/* Vector Library */
|
||||
/*
|
||||
Works with n-dimensional vectors: represented as arrays of numbers
|
||||
*/
|
||||
var V = {};
|
||||
V.Subtract = function(inV1, inV2)
|
||||
{
|
||||
var out = [];
|
||||
for(var i=0; i<inV1.length; i++)
|
||||
{
|
||||
out[i] = inV1[i] - inV2[i];
|
||||
}
|
||||
return out;
|
||||
};
|
||||
V.Add = function(inV1, inV2)
|
||||
{
|
||||
var out = [];
|
||||
for(var i=0; i<inV1.length; i++)
|
||||
{
|
||||
out[i] = inV1[i] + inV2[i];
|
||||
}
|
||||
return out;
|
||||
};
|
||||
V.Distance = function(inV1, inV2)
|
||||
{
|
||||
return V.Length(V.Subtract(inV1, inV2))
|
||||
};
|
||||
V.Dot = function(inV1, inV2)
|
||||
{
|
||||
var out = 0;
|
||||
for(var i=0; i<inV1.length; i++)
|
||||
{
|
||||
out += inV1[i] * inV2[i];
|
||||
}
|
||||
return out;
|
||||
};
|
||||
V.Multiply = function(inV1, inV2)
|
||||
{
|
||||
var out = [];
|
||||
for(var i=0; i<inV1.length; i++)
|
||||
{
|
||||
out[i] = inV1[i] * inV2[i];
|
||||
}
|
||||
return out;
|
||||
};
|
||||
V.Length = function(inV1)
|
||||
{
|
||||
return Math.sqrt(V.Dot(inV1, inV1));
|
||||
};
|
||||
V.Scale = function(inV1, inScalar)
|
||||
{
|
||||
var out = [];
|
||||
for(var i=0; i<inV1.length; i++)
|
||||
{
|
||||
out[i] = inV1[i] * inScalar;
|
||||
}
|
||||
return out;
|
||||
};
|
||||
V.Normalize = function(inV1)
|
||||
{
|
||||
return V.Scale(inV1, 1/V.Length(inV1));
|
||||
};
|
||||
V.Clone = function(inV1)
|
||||
{
|
||||
var out = [];
|
||||
var i;
|
||||
for(i=0; i<inV1.length; i++)
|
||||
{
|
||||
out[i] = inV1[i];
|
||||
}
|
||||
return out;
|
||||
};
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
var M = {};
|
||||
|
||||
/**************************
|
||||
M A T R I X
|
||||
*/
|
||||
// transform inC with inM
|
||||
// returns the transformed inC
|
||||
M.Transform = function(inM, inC)
|
||||
{
|
||||
var outM = [];
|
||||
var outV = [];
|
||||
var i, j;
|
||||
|
||||
for(i=0; i<inC.length; i++)
|
||||
{
|
||||
outV = [];
|
||||
for(j=0; j<inM.length; j++)
|
||||
{
|
||||
outV[j] = V.Dot(inM[j], inC[i]);
|
||||
}
|
||||
outM.push(outV);
|
||||
}
|
||||
return outM;
|
||||
};
|
||||
|
||||
|
||||
// flip rows for columns in inM
|
||||
// returns the modified Matrix
|
||||
M.Transpose = function(inM)
|
||||
{
|
||||
var dimensions = inM[0].length;
|
||||
var i, j;
|
||||
var outM = [];
|
||||
var outV = [];
|
||||
for(i=0; i<dimensions; i++)
|
||||
{
|
||||
outV = [];
|
||||
for(j=0; j<inM.length; j++)
|
||||
{
|
||||
//the Ith componenth of the Jth member
|
||||
outV[j] = inM[j][i];
|
||||
}
|
||||
outM.push(outV);
|
||||
}
|
||||
return outM;
|
||||
}
|
||||
|
||||
// returns a matrix that is the result of the outer product of inV1 and inV2
|
||||
// where the Nth member of outM is a copy of V1, scaled by the Nth component of V2
|
||||
M.Outer = function(inV1, inV2)
|
||||
{
|
||||
var outM = [];
|
||||
|
||||
var i;
|
||||
for(i=0; i<inV2.length; i++)
|
||||
{
|
||||
outM.push(V.Scale(inV1, inV2[i]));
|
||||
}
|
||||
|
||||
return outM;
|
||||
};
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
/**************************
|
||||
B A T C H
|
||||
*/
|
||||
//smash the members of inM with a softmax
|
||||
M.Sigmoid = function(inM)
|
||||
{
|
||||
var i, j;
|
||||
var outM = [];
|
||||
var outV = [];
|
||||
for(i=0; i<inM.length; i++)
|
||||
{
|
||||
outV = [];
|
||||
for(j=0; j<inM[i].length; j++)
|
||||
{
|
||||
outV[j] = 1/(1 + Math.pow(Math.E, -inM[i][j]));
|
||||
}
|
||||
outM.push(outV);
|
||||
}
|
||||
return outM;
|
||||
};
|
||||
// return the derivatives of the members of inM (that have been run through the softmax)
|
||||
M.Derivative = function(inM)
|
||||
{
|
||||
var i, j;
|
||||
var component;
|
||||
var outM = [];
|
||||
var outV = [];
|
||||
for(i=0; i<inM.length; i++)
|
||||
{
|
||||
outV = [];
|
||||
for(j=0; j<inM[i].length; j++)
|
||||
{
|
||||
component = inM[i][j];
|
||||
outV[j] = component*(1 - component);
|
||||
}
|
||||
outM.push(outV);
|
||||
}
|
||||
return outM;
|
||||
};
|
||||
// batch multiply these pairs of vectors
|
||||
M.Multiply = function(inCloud1, inCloud2)
|
||||
{
|
||||
var i;
|
||||
var outM = [];
|
||||
for(i=0; i<inCloud1.length; i++)
|
||||
{
|
||||
outM.push(V.Multiply(inCloud1[i], inCloud2[i]));
|
||||
};
|
||||
return outM;
|
||||
};
|
||||
// batch add
|
||||
M.Add = function(inCloud1, inCloud2)
|
||||
{
|
||||
var outM = [];
|
||||
|
||||
var i;
|
||||
for(i=0; i<inCloud1.length; i++)
|
||||
{
|
||||
outM.push(V.Add(inCloud1[i], inCloud2[i]));
|
||||
}
|
||||
return outM;
|
||||
};
|
||||
M.Subtract = function(inCloud1, inCloud2)
|
||||
{
|
||||
var outM = [];
|
||||
|
||||
var i;
|
||||
for(i=0; i<inCloud1.length; i++)
|
||||
{
|
||||
outM.push(V.Subtract(inCloud1[i], inCloud2[i]));
|
||||
}
|
||||
return outM;
|
||||
};
|
||||
M.Scale = function(inCloud1, inScalar)
|
||||
{
|
||||
var outM = [];
|
||||
|
||||
var i;
|
||||
for(i=0; i<inCloud1.length; i++)
|
||||
{
|
||||
outM.push(V.Scale(inCloud1[i], inScalar));
|
||||
}
|
||||
return outM;
|
||||
};
|
||||
M.Clone = function(inM)
|
||||
{
|
||||
var i;
|
||||
var outM;
|
||||
var outV;
|
||||
|
||||
outM =[];
|
||||
for(i=0; i<inM.length; i++)
|
||||
{
|
||||
outM.push(V.Clone(inM[i]));
|
||||
}
|
||||
return outM;
|
||||
};
|
||||
|
||||
|
||||
/**************************
|
||||
B O U N D S
|
||||
*/
|
||||
// return the bounding box of inM as a two-member Matrix
|
||||
M.Bounds = function(inM)
|
||||
{
|
||||
var dimensions = inM[0].length;
|
||||
var i, j;
|
||||
var min = [];
|
||||
var max = [];
|
||||
for(i=0; i<dimensions; i++)
|
||||
{
|
||||
min[i] = 9999999;
|
||||
max[i] = -999999;
|
||||
}
|
||||
for(i=0; i<inM.length; i++)
|
||||
{
|
||||
for(j=0; j<dimensions; j++)
|
||||
{
|
||||
if(inM[i][j] < min[j])
|
||||
{
|
||||
min[j] = inM[i][j];
|
||||
}
|
||||
if(inM[i][j] > max[j])
|
||||
{
|
||||
max[j] = inM[i][j];
|
||||
}
|
||||
}
|
||||
}
|
||||
return [min, max];
|
||||
};
|
||||
|
||||
// find the local coordinates for all the members of inM, within the bounding box inB
|
||||
// returns a new Matrix of relative vectors
|
||||
M.GlobalToLocal = function(inM, inB)
|
||||
{
|
||||
var dimensions = inB[0].length;
|
||||
var i, j;
|
||||
var outM = [];
|
||||
var outV = [];
|
||||
var size;
|
||||
var min;
|
||||
var denominator;
|
||||
for(i=0; i<inM.length; i++)
|
||||
{
|
||||
outV = [];
|
||||
for(j=0; j<dimensions; j++)
|
||||
{
|
||||
denominator = inB[1][j] - inB[0][j];
|
||||
if(denominator == 0)
|
||||
{
|
||||
outV[j] = inB[1][j];// if min and max are the same, just output max
|
||||
}
|
||||
else
|
||||
{
|
||||
outV[j] = (inM[i][j] - inB[0][j])/denominator;
|
||||
}
|
||||
}
|
||||
outM.push(outV);
|
||||
}
|
||||
return outM;
|
||||
};
|
||||
// find the global coordinates for all the members of inM, within the bounding box inB
|
||||
// returns a new Matrix of global vectors
|
||||
M.LocalToGlobal = function(inM, inB)
|
||||
{
|
||||
var dimensions = inB[0].length;
|
||||
var i, j;
|
||||
var outM = [];
|
||||
var outV = [];
|
||||
var size;
|
||||
var min;
|
||||
for(i=0; i<inM.length; i++)
|
||||
{
|
||||
outV = [];
|
||||
for(j=0; j<dimensions; j++)
|
||||
{
|
||||
outV[j] = inB[0][j] + inM[i][j] * (inB[1][j] - inB[0][j]);
|
||||
}
|
||||
outM.push(outV);
|
||||
}
|
||||
return outM;
|
||||
};
|
||||
|
||||
|
||||
/**************************
|
||||
C L O U D
|
||||
*/
|
||||
// return some number of points from inM as a new Matrix
|
||||
M.Reduce = function(inM, inCount)
|
||||
{
|
||||
var largeGroupSize;
|
||||
var largeGroupCount;
|
||||
var smallGroupSize;
|
||||
var outM = [];
|
||||
|
||||
largeGroupSize = Math.floor(inM.length/inM);
|
||||
smallGroupSize = inM.length%inCount
|
||||
for(i=0; i<inM-1; i++)
|
||||
{
|
||||
index = i*largeGroupSize + Math.floor(Math.random()*largeGroupSize);
|
||||
outM.push( V.Clone(inM[index]) );
|
||||
}
|
||||
if(smallGroupSize != 0)
|
||||
{
|
||||
index = i*largeGroupSize + Math.floor(Math.random()*smallGroupSize)
|
||||
outM.push( V.Clone(inM[index]) );
|
||||
}
|
||||
return outM;
|
||||
};
|
||||
|
||||
// return a Matrix of length inCount, where all the members fall within the circle paramemters, including a bias
|
||||
M.Circle = function(inCenter, inRadius, inBias, inCount)
|
||||
{
|
||||
var i, j;
|
||||
var vector;
|
||||
var length;
|
||||
var outM = [];
|
||||
|
||||
for(i=0; i<inCount; i++)
|
||||
{
|
||||
//generate a random vector
|
||||
vector = [];
|
||||
for(j=0; j<inCenter.length; j++)
|
||||
{
|
||||
vector[j] = (Math.random() - 0.5);
|
||||
}
|
||||
|
||||
//normalize the vector
|
||||
vector = V.Scale(vector, 1/V.Length(vector));
|
||||
|
||||
//set a random length (with a bias)
|
||||
length = Math.pow(Math.random(), Math.log(inBias)/Math.log(0.5))*inRadius;
|
||||
vector = V.Scale(vector, length);
|
||||
|
||||
//move the vector to the center
|
||||
vector = V.Add(vector, inCenter);
|
||||
|
||||
outM.push(vector);
|
||||
}
|
||||
return outM;
|
||||
};
|
||||
|
||||
// return a Matrix of length inCount, where all the members fall within inBounds
|
||||
M.Box = function(inBounds, inCount)
|
||||
{
|
||||
var vector;
|
||||
var dimensions = inBounds[0].length;
|
||||
var i, j;
|
||||
var min, max;
|
||||
var outM = [];
|
||||
|
||||
for(i=0; i<inCount; i++)
|
||||
{
|
||||
vector = [];
|
||||
for(j=0; j<dimensions; j++)
|
||||
{
|
||||
min = inBounds[0][j];
|
||||
max = inBounds[1][j];
|
||||
|
||||
vector[j] = min + Math.random()*(max - min);
|
||||
}
|
||||
outM.push(vector);
|
||||
}
|
||||
return outM;
|
||||
};
|
||||
|
||||
//combine all the matricies in inList into one long Matrix
|
||||
M.Combine = function(inList)
|
||||
{
|
||||
var i, j;
|
||||
var outM = [];
|
||||
for(i=0; i<inList.length; i++)
|
||||
{
|
||||
for(j=0; j<inList[i].length; j++)
|
||||
{
|
||||
outM.push(V.Clone(inList[i][j]));
|
||||
}
|
||||
}
|
||||
return outM;
|
||||
};
|
||||
|
||||
/*
|
||||
PLEASE NOTE: These padding routines are unique to this library in that they
|
||||
actually modify the input object(s) rather than returning modified copies!
|
||||
*/
|
||||
// add a new component (set to '1') to each member of inM
|
||||
M.Pad = function(inM)
|
||||
{
|
||||
var i;
|
||||
for(i=0; i<inM.length; i++)
|
||||
{
|
||||
inM[i].push(1);
|
||||
}
|
||||
return inM;
|
||||
};
|
||||
// remove the last component of each memeber of inM
|
||||
M.Unpad = function(inM)
|
||||
{
|
||||
var i;
|
||||
for(i=0; i<inM.length; i++)
|
||||
{
|
||||
inM[i].pop();
|
||||
}
|
||||
return inM;
|
||||
};
|
||||
// set the last component of each member of inM to 1
|
||||
M.Repad = function(inM)
|
||||
{
|
||||
var i;
|
||||
var last = inM[0].length-1;
|
||||
for(i=0; i<inM.length; i++)
|
||||
{
|
||||
inM[i][last] = 1;
|
||||
}
|
||||
return inM;
|
||||
};
|
||||
</script>
|
||||
|
||||
<script>
|
||||
var NN = {};
|
||||
|
||||
NN.TrainingSet = {};
|
||||
NN.TrainingSet.Instances = [];
|
||||
NN.TrainingSet.Create = function()
|
||||
{
|
||||
var obj = {};
|
||||
|
||||
obj.Input = [];
|
||||
obj.Output = [];
|
||||
obj.Order = [];
|
||||
|
||||
NN.TrainingSet.Instances.push(obj);
|
||||
return obj;
|
||||
};
|
||||
NN.TrainingSet.AddPoint = function(inTrainingSet, inType, inData)
|
||||
{
|
||||
inTrainingSet.Input.push(inData);
|
||||
inTrainingSet.Output.push(inType);
|
||||
inTrainingSet.Order.push(inTrainingSet.Order.length);
|
||||
};
|
||||
NN.TrainingSet.AddCloud = function(inTrainingSet, inLabel, inCloud)
|
||||
{
|
||||
var i;
|
||||
for(i=0; i<inCloud.length; i++)
|
||||
{
|
||||
NN.TrainingSet.AddPoint(inTrainingSet, inLabel, inCloud[i]);
|
||||
}
|
||||
};
|
||||
NN.TrainingSet.Randomize = function(inTrainingSet)
|
||||
{
|
||||
var newOrder = [];
|
||||
var selection;
|
||||
while(inTrainingSet.Order.length != 0)
|
||||
{
|
||||
selection = Math.floor(inTrainingSet.Order.length * Math.random());
|
||||
inTrainingSet.Order.splice(selection, 1);
|
||||
newOrder.push(selection);
|
||||
}
|
||||
inTrainingSet.Order = newOrder;
|
||||
};
|
||||
|
||||
|
||||
NN.Layer = {};
|
||||
NN.Layer.Create = function(sizeIn, sizeOut)
|
||||
{
|
||||
var i;
|
||||
var min = [];
|
||||
var max = [];
|
||||
var obj = {};
|
||||
|
||||
sizeIn++;
|
||||
|
||||
obj.Forward = {};
|
||||
for(i=0; i<sizeIn; i++)
|
||||
{
|
||||
min.push(-1);
|
||||
max.push(1);
|
||||
}
|
||||
obj.Forward.Matrix = M.Box([min, max], sizeOut);
|
||||
obj.Forward.StageInput = [];
|
||||
obj.Forward.StageAffine = [];
|
||||
obj.Forward.StageSigmoid = [];
|
||||
obj.Forward.StageDerivative = [];
|
||||
|
||||
obj.Backward = {};
|
||||
obj.Backward.Matrix = M.Transpose(obj.Forward.Matrix);
|
||||
obj.Backward.StageInput = [];
|
||||
obj.Backward.StageDerivative = [];
|
||||
obj.Backward.StageAffine = [];
|
||||
|
||||
return obj;
|
||||
};
|
||||
NN.Layer.Forward = function(inLayer, inInput)
|
||||
{
|
||||
inLayer.Forward.StageInput = M.Pad(inInput); // Pad the input
|
||||
inLayer.Forward.StageAffine = M.Transform(inLayer.Forward.Matrix, inLayer.Forward.StageInput);
|
||||
inLayer.Forward.StageSigmoid = M.Sigmoid(inLayer.Forward.StageAffine);
|
||||
|
||||
return inLayer.Forward.StageSigmoid;
|
||||
};
|
||||
NN.Layer.Error = function(inLayer, inTarget)
|
||||
{
|
||||
return M.Subtract(inLayer.Forward.StageSigmoid, inTarget);
|
||||
};
|
||||
NN.Layer.Backward = function(inLayer, inInput)
|
||||
{
|
||||
/* We need the derivative of the forward pass, but only during the backward pass.
|
||||
That's why-- even though it "belongs" to the forward pass-- it is being calculated here. */
|
||||
inLayer.Forward.StageDerivative = M.Derivative(inLayer.Forward.StageSigmoid);
|
||||
|
||||
/* This transpose matrix is for sending the error back to a previous layer.
|
||||
And again, even though it is derived directly from the forward matrix, it is only needed during the backward pass so we calculate it here.*/
|
||||
inLayer.Backward.Matrix = M.Transpose(inLayer.Forward.Matrix);
|
||||
|
||||
/* When the error vector arrives at a layer, it always needs to be multiplied (read 'supressed') by the derivative of
|
||||
what the layer output earlier during the forward pass.
|
||||
So despite its name, Backward.StageDerivative contains the result of this *multiplication* and not some new derivative calculation.*/
|
||||
inLayer.Backward.StageInput = inInput;
|
||||
inLayer.Backward.StageDerivative = M.Multiply(inLayer.Backward.StageInput, inLayer.Forward.StageDerivative);
|
||||
inLayer.Backward.StageAffine = M.Transform(inLayer.Backward.Matrix, inLayer.Backward.StageDerivative);
|
||||
|
||||
return M.Unpad(inLayer.Backward.StageAffine);// Unpad the output
|
||||
};
|
||||
NN.Layer.Adjust = function(inLayer, inLearningRate)
|
||||
{
|
||||
var deltas;
|
||||
var vector;
|
||||
var scalar;
|
||||
var i, j;
|
||||
|
||||
for(i=0; i<inLayer.Forward.StageInput.length; i++)
|
||||
{
|
||||
deltas = M.Outer(inLayer.Forward.StageInput[i], inLayer.Backward.StageDerivative[i]);
|
||||
deltas = M.Scale(deltas, inLearningRate);
|
||||
|
||||
inLayer.Forward.Matrix = M.Subtract(inLayer.Forward.Matrix, deltas);
|
||||
}
|
||||
};
|
||||
NN.Layer.Stochastic = function(inLayer, inTrainingSet, inIterations)
|
||||
{
|
||||
/* this method is ONLY for testing individual layers, and does not translate to network-level training */
|
||||
var i, j;
|
||||
var current;
|
||||
var error;
|
||||
for(i=0; i<inIterations; i++)
|
||||
{
|
||||
NN.TrainingSet.Randomize(inTrainingSet);
|
||||
for(j=0; j<inTrainingSet.Order.length; j++)
|
||||
{
|
||||
current = inTrainingSet.Order[j];
|
||||
NN.Layer.Forward(inLayer, [inTrainingSet.Input[current]]);
|
||||
error = M.Subtract(inLayer.Forward.StageSigmoid, [inTrainingSet.Output[current]]);
|
||||
NN.Layer.Backward(inLayer, error);
|
||||
NN.Layer.Adjust(inLayer, 0.1);
|
||||
}
|
||||
}
|
||||
};
|
||||
|
||||
NN.Network = {};
|
||||
NN.Network.Instances = [];
|
||||
NN.Network.Create = function()
|
||||
{
|
||||
var obj = {};
|
||||
var i;
|
||||
|
||||
obj.Layers = [];
|
||||
obj.LearningRate = 0.1;
|
||||
obj.Error = [];
|
||||
|
||||
for(i=0; i<arguments.length-1; i++)
|
||||
{
|
||||
obj.Layers.push(NN.Layer.Create(arguments[i], arguments[i+1]));
|
||||
}
|
||||
|
||||
NN.Network.Instances.push(obj);
|
||||
return obj;
|
||||
};
|
||||
NN.Network.Observe = function(inNetwork, inBatch)
|
||||
{
|
||||
var input = M.Clone(inBatch);
|
||||
var i;
|
||||
for(i=0; i<inNetwork.Layers.length; i++)
|
||||
{
|
||||
input = NN.Layer.Forward(inNetwork.Layers[i], input);
|
||||
}
|
||||
return inNetwork.Layers[inNetwork.Layers.length-1].Forward.StageSigmoid;
|
||||
};
|
||||
NN.Network.Error = function(inNetwork, inTraining)
|
||||
{
|
||||
return M.Subtract(inNetwork.Layers[inNetwork.Layers.length-1].Forward.StageSigmoid, inTraining);
|
||||
};
|
||||
NN.Network.Learn = function(inNetwork, inError)
|
||||
{
|
||||
var input = inError;
|
||||
var i;
|
||||
for(i=inNetwork.Layers.length-1; i>=0; i--)
|
||||
{
|
||||
input = NN.Layer.Backward(inNetwork.Layers[i], input);
|
||||
NN.Layer.Adjust(inNetwork.Layers[i], inNetwork.LearningRate);
|
||||
}
|
||||
};
|
||||
|
||||
|
||||
NN.Network.Batch = function(inNetwork, inTrainingSet, inIterations)
|
||||
{
|
||||
var i;
|
||||
for(i=0; i<inIterations; i++)
|
||||
{
|
||||
NN.Network.Observe(inNetwork, inTrainingSet.Input);
|
||||
inNetwork.Error = NN.Network.Error(inNetwork, inTrainingSet.Output)
|
||||
NN.Network.Learn(inNetwork, inNetwork.Error);
|
||||
}
|
||||
};
|
||||
NN.Network.Stochastic = function(inNetwork, inTrainingSet, inIterations)
|
||||
{
|
||||
var i, j;
|
||||
var current;
|
||||
|
||||
for(i=0; i<inIterations; i++)
|
||||
{
|
||||
NN.TrainingSet.Randomize(inTrainingSet);
|
||||
for(j=0; j<inTrainingSet.Order.length; j++)
|
||||
{
|
||||
current = inTrainingSet.Order[j];
|
||||
NN.Network.Observe(inNetwork, [inTrainingSet.Input[current]]);
|
||||
inNetwork.Error = NN.Network.Error(inNetwork, [inTrainingSet.Output[current]]);
|
||||
NN.Network.Learn(inNetwork, inNetwork.Error);
|
||||
}
|
||||
}
|
||||
};
|
||||
</script>
|
||||
|
||||
<script>
|
||||
let matrix1 = [
|
||||
[-0.43662948305036675, -0.368590640707799, -0.23227179558890843],
|
||||
[-0.004292653969505622, 0.38670055222186317, -0.2478421495365568],
|
||||
[0.738181366836224, 0.3389203747353555, 0.4920200816404332]
|
||||
];
|
||||
|
||||
let matrix2 = [
|
||||
[0.7098703863463034, 0.35485944251238033, 0.7642849892333241, 0.03046174288491077],
|
||||
[-0.30655426258144347, 0.45509633551425077, -0.5013795222004322, -0.3421292736637427]
|
||||
];
|
||||
|
||||
let input = [
|
||||
[ 0.1, 0.05],
|
||||
[ 0.0, -0.06],
|
||||
[ 0.99, 0.85],
|
||||
[ 1.2, 1.05]
|
||||
];
|
||||
let output = [
|
||||
[1, 0],
|
||||
[1, 0],
|
||||
[0, 1],
|
||||
[0, 1]
|
||||
];
|
||||
|
||||
let nn1 = NN.Network.Create(2, 3, 2);
|
||||
nn1.Layers[0].Forward.Matrix = matrix1;
|
||||
nn1.Layers[1].Forward.Matrix = matrix2;
|
||||
nn1.LearningRate = 0.1;
|
||||
//let logLayers = inNN => inNN.Layers.forEach(L=>console.log(L.Forward.Matrix));
|
||||
|
||||
NN.Network.Batch(nn1, {Input:input, Output:output}, 1000);
|
||||
console.log(NN.Network.Observe(nn1, input));
|
||||
|
||||
</script>
|
10
index.js
Normal file
10
index.js
Normal file
@ -0,0 +1,10 @@
|
||||
import { Build, Learn, Label } from "./nn.ts";
|
||||
import { default as Clean } from "./iris.js";
|
||||
|
||||
let [ inputs, labels ] = Clean();
|
||||
|
||||
let layers = Build(4, 10, 3);
|
||||
let errors = Learn(inputs, layers, labels, 500, 0.1);
|
||||
let output = Label(inputs, layers, true);
|
||||
|
||||
console.log(output);
|
238
iris.js
Normal file
238
iris.js
Normal file
@ -0,0 +1,238 @@
|
||||
export default () =>
|
||||
{
|
||||
let inputs = [];
|
||||
let labels = [];
|
||||
|
||||
let min = [999, 999, 999, 999];
|
||||
let max = [-99, -99, -99, -99];
|
||||
|
||||
DataBig.split("\n").forEach((inRowValue, inRowIndex)=>
|
||||
{
|
||||
let currentInput = [];
|
||||
let currentLabel = [];
|
||||
|
||||
if(inRowIndex == 0){ return; }
|
||||
|
||||
inRowValue.split(",").forEach((inCellValue, inCellIndex)=>
|
||||
{
|
||||
if(inCellIndex == 4)
|
||||
{
|
||||
switch(inCellValue)
|
||||
{
|
||||
case `"Setosa"`:
|
||||
currentLabel = [1, 0, 0];
|
||||
break;
|
||||
case `"Versicolor"` :
|
||||
currentLabel = [0, 1, 0];
|
||||
break;
|
||||
case `"Virginica"` :
|
||||
currentLabel = [0, 0, 1];
|
||||
break;
|
||||
}
|
||||
}
|
||||
else
|
||||
{
|
||||
let value = parseFloat(inCellValue);
|
||||
if(min[inCellIndex] > value){ min[inCellIndex] = value; }
|
||||
if(max[inCellIndex] < value){ max[inCellIndex] = value; }
|
||||
currentInput.push(value);
|
||||
}
|
||||
});
|
||||
|
||||
inputs.push(currentInput);
|
||||
labels.push(currentLabel);
|
||||
});
|
||||
|
||||
console.log(min, max);
|
||||
inputs.forEach((inRowValue, inRowIndex)=>
|
||||
{
|
||||
inRowValue.forEach((inCellValue, inCellIndex)=>
|
||||
{
|
||||
inputs[inRowIndex][inCellIndex] = (inCellValue - min[inCellIndex])/(max[inCellIndex] - min[inCellIndex]);
|
||||
});
|
||||
})
|
||||
|
||||
return [ inputs, labels ];
|
||||
};
|
||||
const Data = `"sepal.length","sepal.width","petal.length","petal.width","variety"
|
||||
5.1,3.5,1.4,.2,"Setosa"
|
||||
4.9,3,1.4,.2,"Setosa"
|
||||
4.7,3.2,1.3,.2,"Setosa"
|
||||
4.6,3.1,1.5,.2,"Setosa"
|
||||
5,3.6,1.4,.2,"Setosa"
|
||||
5.4,3.9,1.7,.4,"Setosa"
|
||||
4.6,3.4,1.4,.3,"Setosa"
|
||||
7,3.2,4.7,1.4,"Versicolor"
|
||||
6.4,3.2,4.5,1.5,"Versicolor"
|
||||
6.9,3.1,4.9,1.5,"Versicolor"
|
||||
5.5,2.3,4,1.3,"Versicolor"
|
||||
6.5,2.8,4.6,1.5,"Versicolor"
|
||||
5.7,2.8,4.5,1.3,"Versicolor"
|
||||
6.3,3.3,4.7,1.6,"Versicolor"
|
||||
4.9,2.4,3.3,1,"Versicolor"
|
||||
6.6,2.9,4.6,1.3,"Versicolor"
|
||||
5.2,2.7,3.9,1.4,"Versicolor"
|
||||
5,2,3.5,1,"Versicolor"
|
||||
5.7,2.5,5,2,"Virginica"
|
||||
5.8,2.8,5.1,2.4,"Virginica"
|
||||
6.4,3.2,5.3,2.3,"Virginica"
|
||||
6.5,3,5.5,1.8,"Virginica"
|
||||
7.7,3.8,6.7,2.2,"Virginica"
|
||||
7.7,2.6,6.9,2.3,"Virginica"
|
||||
6,2.2,5,1.5,"Virginica"
|
||||
6.9,3.2,5.7,2.3,"Virginica"
|
||||
5.6,2.8,4.9,2,"Virginica"
|
||||
7.7,2.8,6.7,2,"Virginica"
|
||||
6.3,2.7,4.9,1.8,"Virginica"
|
||||
6.7,3.3,5.7,2.1,"Virginica"`;
|
||||
const DataBig = `"sepal.length","sepal.width","petal.length","petal.width","variety"
|
||||
5.1,3.5,1.4,.2,"Setosa"
|
||||
4.9,3,1.4,.2,"Setosa"
|
||||
4.7,3.2,1.3,.2,"Setosa"
|
||||
4.6,3.1,1.5,.2,"Setosa"
|
||||
5,3.6,1.4,.2,"Setosa"
|
||||
5.4,3.9,1.7,.4,"Setosa"
|
||||
4.6,3.4,1.4,.3,"Setosa"
|
||||
5,3.4,1.5,.2,"Setosa"
|
||||
4.4,2.9,1.4,.2,"Setosa"
|
||||
4.9,3.1,1.5,.1,"Setosa"
|
||||
5.4,3.7,1.5,.2,"Setosa"
|
||||
4.8,3.4,1.6,.2,"Setosa"
|
||||
4.8,3,1.4,.1,"Setosa"
|
||||
4.3,3,1.1,.1,"Setosa"
|
||||
5.8,4,1.2,.2,"Setosa"
|
||||
5.7,4.4,1.5,.4,"Setosa"
|
||||
5.4,3.9,1.3,.4,"Setosa"
|
||||
5.1,3.5,1.4,.3,"Setosa"
|
||||
5.7,3.8,1.7,.3,"Setosa"
|
||||
5.1,3.8,1.5,.3,"Setosa"
|
||||
5.4,3.4,1.7,.2,"Setosa"
|
||||
5.1,3.7,1.5,.4,"Setosa"
|
||||
4.6,3.6,1,.2,"Setosa"
|
||||
5.1,3.3,1.7,.5,"Setosa"
|
||||
4.8,3.4,1.9,.2,"Setosa"
|
||||
5,3,1.6,.2,"Setosa"
|
||||
5,3.4,1.6,.4,"Setosa"
|
||||
5.2,3.5,1.5,.2,"Setosa"
|
||||
5.2,3.4,1.4,.2,"Setosa"
|
||||
4.7,3.2,1.6,.2,"Setosa"
|
||||
4.8,3.1,1.6,.2,"Setosa"
|
||||
5.4,3.4,1.5,.4,"Setosa"
|
||||
5.2,4.1,1.5,.1,"Setosa"
|
||||
5.5,4.2,1.4,.2,"Setosa"
|
||||
4.9,3.1,1.5,.2,"Setosa"
|
||||
5,3.2,1.2,.2,"Setosa"
|
||||
5.5,3.5,1.3,.2,"Setosa"
|
||||
4.9,3.6,1.4,.1,"Setosa"
|
||||
4.4,3,1.3,.2,"Setosa"
|
||||
5.1,3.4,1.5,.2,"Setosa"
|
||||
5,3.5,1.3,.3,"Setosa"
|
||||
4.5,2.3,1.3,.3,"Setosa"
|
||||
4.4,3.2,1.3,.2,"Setosa"
|
||||
5,3.5,1.6,.6,"Setosa"
|
||||
5.1,3.8,1.9,.4,"Setosa"
|
||||
4.8,3,1.4,.3,"Setosa"
|
||||
5.1,3.8,1.6,.2,"Setosa"
|
||||
4.6,3.2,1.4,.2,"Setosa"
|
||||
5.3,3.7,1.5,.2,"Setosa"
|
||||
5,3.3,1.4,.2,"Setosa"
|
||||
7,3.2,4.7,1.4,"Versicolor"
|
||||
6.4,3.2,4.5,1.5,"Versicolor"
|
||||
6.9,3.1,4.9,1.5,"Versicolor"
|
||||
5.5,2.3,4,1.3,"Versicolor"
|
||||
6.5,2.8,4.6,1.5,"Versicolor"
|
||||
5.7,2.8,4.5,1.3,"Versicolor"
|
||||
6.3,3.3,4.7,1.6,"Versicolor"
|
||||
4.9,2.4,3.3,1,"Versicolor"
|
||||
6.6,2.9,4.6,1.3,"Versicolor"
|
||||
5.2,2.7,3.9,1.4,"Versicolor"
|
||||
5,2,3.5,1,"Versicolor"
|
||||
5.9,3,4.2,1.5,"Versicolor"
|
||||
6,2.2,4,1,"Versicolor"
|
||||
6.1,2.9,4.7,1.4,"Versicolor"
|
||||
5.6,2.9,3.6,1.3,"Versicolor"
|
||||
6.7,3.1,4.4,1.4,"Versicolor"
|
||||
5.6,3,4.5,1.5,"Versicolor"
|
||||
5.8,2.7,4.1,1,"Versicolor"
|
||||
6.2,2.2,4.5,1.5,"Versicolor"
|
||||
5.6,2.5,3.9,1.1,"Versicolor"
|
||||
5.9,3.2,4.8,1.8,"Versicolor"
|
||||
6.1,2.8,4,1.3,"Versicolor"
|
||||
6.3,2.5,4.9,1.5,"Versicolor"
|
||||
6.1,2.8,4.7,1.2,"Versicolor"
|
||||
6.4,2.9,4.3,1.3,"Versicolor"
|
||||
6.6,3,4.4,1.4,"Versicolor"
|
||||
6.8,2.8,4.8,1.4,"Versicolor"
|
||||
6.7,3,5,1.7,"Versicolor"
|
||||
6,2.9,4.5,1.5,"Versicolor"
|
||||
5.7,2.6,3.5,1,"Versicolor"
|
||||
5.5,2.4,3.8,1.1,"Versicolor"
|
||||
5.5,2.4,3.7,1,"Versicolor"
|
||||
5.8,2.7,3.9,1.2,"Versicolor"
|
||||
6,2.7,5.1,1.6,"Versicolor"
|
||||
5.4,3,4.5,1.5,"Versicolor"
|
||||
6,3.4,4.5,1.6,"Versicolor"
|
||||
6.7,3.1,4.7,1.5,"Versicolor"
|
||||
6.3,2.3,4.4,1.3,"Versicolor"
|
||||
5.6,3,4.1,1.3,"Versicolor"
|
||||
5.5,2.5,4,1.3,"Versicolor"
|
||||
5.5,2.6,4.4,1.2,"Versicolor"
|
||||
6.1,3,4.6,1.4,"Versicolor"
|
||||
5.8,2.6,4,1.2,"Versicolor"
|
||||
5,2.3,3.3,1,"Versicolor"
|
||||
5.6,2.7,4.2,1.3,"Versicolor"
|
||||
5.7,3,4.2,1.2,"Versicolor"
|
||||
5.7,2.9,4.2,1.3,"Versicolor"
|
||||
6.2,2.9,4.3,1.3,"Versicolor"
|
||||
5.1,2.5,3,1.1,"Versicolor"
|
||||
5.7,2.8,4.1,1.3,"Versicolor"
|
||||
6.3,3.3,6,2.5,"Virginica"
|
||||
5.8,2.7,5.1,1.9,"Virginica"
|
||||
7.1,3,5.9,2.1,"Virginica"
|
||||
6.3,2.9,5.6,1.8,"Virginica"
|
||||
6.5,3,5.8,2.2,"Virginica"
|
||||
7.6,3,6.6,2.1,"Virginica"
|
||||
4.9,2.5,4.5,1.7,"Virginica"
|
||||
7.3,2.9,6.3,1.8,"Virginica"
|
||||
6.7,2.5,5.8,1.8,"Virginica"
|
||||
7.2,3.6,6.1,2.5,"Virginica"
|
||||
6.5,3.2,5.1,2,"Virginica"
|
||||
6.4,2.7,5.3,1.9,"Virginica"
|
||||
6.8,3,5.5,2.1,"Virginica"
|
||||
5.7,2.5,5,2,"Virginica"
|
||||
5.8,2.8,5.1,2.4,"Virginica"
|
||||
6.4,3.2,5.3,2.3,"Virginica"
|
||||
6.5,3,5.5,1.8,"Virginica"
|
||||
7.7,3.8,6.7,2.2,"Virginica"
|
||||
7.7,2.6,6.9,2.3,"Virginica"
|
||||
6,2.2,5,1.5,"Virginica"
|
||||
6.9,3.2,5.7,2.3,"Virginica"
|
||||
5.6,2.8,4.9,2,"Virginica"
|
||||
7.7,2.8,6.7,2,"Virginica"
|
||||
6.3,2.7,4.9,1.8,"Virginica"
|
||||
6.7,3.3,5.7,2.1,"Virginica"
|
||||
7.2,3.2,6,1.8,"Virginica"
|
||||
6.2,2.8,4.8,1.8,"Virginica"
|
||||
6.1,3,4.9,1.8,"Virginica"
|
||||
6.4,2.8,5.6,2.1,"Virginica"
|
||||
7.2,3,5.8,1.6,"Virginica"
|
||||
7.4,2.8,6.1,1.9,"Virginica"
|
||||
7.9,3.8,6.4,2,"Virginica"
|
||||
6.4,2.8,5.6,2.2,"Virginica"
|
||||
6.3,2.8,5.1,1.5,"Virginica"
|
||||
6.1,2.6,5.6,1.4,"Virginica"
|
||||
7.7,3,6.1,2.3,"Virginica"
|
||||
6.3,3.4,5.6,2.4,"Virginica"
|
||||
6.4,3.1,5.5,1.8,"Virginica"
|
||||
6,3,4.8,1.8,"Virginica"
|
||||
6.9,3.1,5.4,2.1,"Virginica"
|
||||
6.7,3.1,5.6,2.4,"Virginica"
|
||||
6.9,3.1,5.1,2.3,"Virginica"
|
||||
5.8,2.7,5.1,1.9,"Virginica"
|
||||
6.8,3.2,5.9,2.3,"Virginica"
|
||||
6.7,3.3,5.7,2.5,"Virginica"
|
||||
6.7,3,5.2,2.3,"Virginica"
|
||||
6.3,2.5,5,1.9,"Virginica"
|
||||
6.5,3,5.2,2,"Virginica"
|
||||
6.2,3.4,5.4,2.3,"Virginica"
|
||||
5.9,3,5.1,1.8,"Virginica"`;
|
31
m.test.js
31
m.test.js
@ -11,10 +11,10 @@ Deno.test("Iterate.Loop", ()=>
|
||||
assertEquals(cloud[0][0], 0);
|
||||
assertEquals(cloud[3][2], 5, "correct output");
|
||||
});
|
||||
Deno.test("Iterate.Edit", ()=>
|
||||
Deno.test("Iterate.Copy", ()=>
|
||||
{
|
||||
const c = [[1, 2], [3, 4]]
|
||||
const t = M.Iterate.Edit(c, (i)=>i);
|
||||
const t = M.Iterate.Copy(c, (i)=>i);
|
||||
assertEquals(t.length, c.length, "correct count");
|
||||
assertEquals(t[0][0], c[0][0], "correct dimensions");
|
||||
assertEquals(t[1][1], c[1][1], "correct placement");
|
||||
@ -146,20 +146,39 @@ Deno.test("Batch.Subtract", ()=>
|
||||
assertEquals(t[0].length, 2, "correct dimensions");
|
||||
assertEquals(t[1][0], 2.5, "correct placement");
|
||||
});
|
||||
Deno.test("Batch.Sigmoid", ()=>
|
||||
Deno.test("Batch.Sig", ()=>
|
||||
{
|
||||
const m = [[-1000, 1000]];
|
||||
const t = M.Batch.Sigmoid(m);
|
||||
const t = M.Batch.Sig(m);
|
||||
assertEquals(t.length, 1, "correct count");
|
||||
assertEquals(t[0].length, 2, "correct dimensions");
|
||||
assert(t[0][0]>=0 && t[0][0]<0.5);
|
||||
assert(t[0][1]<=1 && t[0][1]>0.5, "correct placement");
|
||||
|
||||
});
|
||||
Deno.test("Batch.Derivative", ()=>
|
||||
Deno.test("Batch.SigDeriv", ()=>
|
||||
{
|
||||
const m = [[-1000, 0, 1000]];
|
||||
const t = M.Batch.Derivative(M.Batch.Sigmoid(m));
|
||||
const t = M.Batch.SigDeriv(M.Batch.Sig(m));
|
||||
assertEquals(t.length, 1, "correct count");
|
||||
assertEquals(t[0].length, 3, "correct dimensions");
|
||||
assert(t[0][0]<t[0][1] && t[0][1]>t[0][2]);
|
||||
});
|
||||
|
||||
Deno.test("Batch.Rec", ()=>
|
||||
{
|
||||
const m = [[-1, 1, 10]];
|
||||
const t = M.Batch.Rec(m);
|
||||
assert(t[0][0] == 0);
|
||||
assert(t[0][1] == 1);
|
||||
assert(t[0][2] == 10);
|
||||
});
|
||||
Deno.test("Batch.RecDeriv", ()=>
|
||||
{
|
||||
const m = [[-1, 1, 10]];
|
||||
const t = M.Batch.RecDeriv(m);
|
||||
|
||||
assert(t[0][0] == 0);
|
||||
assert(t[0][1] == 1);
|
||||
assert(t[0][2] == 1);
|
||||
});
|
26
m.ts
26
m.ts
@ -16,35 +16,27 @@ const Methods = {
|
||||
for(i=0; i<inCount; i++)
|
||||
{
|
||||
outputVector = [];
|
||||
for(j=0; j<inDimensions; j++)
|
||||
{
|
||||
outputVector.push(inFunction(j, i, outputVector));
|
||||
}
|
||||
for(j=0; j<inDimensions; j++){ outputVector.push(inFunction(j, i, outputVector)); }
|
||||
outputCloud.push(outputVector);
|
||||
}
|
||||
return outputCloud;
|
||||
},
|
||||
Edit: (inCloud:Cloud.M, inFunction:Cloud.HandleEdit):Cloud.M=> inCloud.map((row:Cloud.V):Cloud.V=>row.map(inFunction))
|
||||
Copy: (inCloud:Cloud.M, inFunction:Cloud.HandleEdit):Cloud.M=> inCloud.map((row:Cloud.V):Cloud.V=> row.map(inFunction)),
|
||||
Edit: (inCloud:Cloud.M, inFunction:Cloud.HandleEdit):void => inCloud.forEach((row:Cloud.V):void=>row.forEach(inFunction))
|
||||
},
|
||||
Create:
|
||||
{
|
||||
Box: (inV1:Cloud.V, inV2:Cloud.V, inCount:number):Cloud.M=> Methods.Iterate.Loop(inV1.length, inCount, i=> inV1[i]+(inV2[i]-inV1[i])*Math.random()),
|
||||
Transpose: (inCloud:Cloud.M):Cloud.M=> Methods.Iterate.Loop(inCloud.length, inCloud[0].length, (i, row)=> inCloud[i][row]),
|
||||
Outer: (inV1:Cloud.V, inV2:Cloud.V):Cloud.M=> Methods.Iterate.Loop(inV1.length, inV2.length, (i, row)=> inV1[i]*inV2[row]),
|
||||
Clone: (inCloud:Cloud.M):Cloud.M=> Methods.Iterate.Edit(inCloud, i=> i)
|
||||
Clone: (inCloud:Cloud.M):Cloud.M=> Methods.Iterate.Copy(inCloud, i=> i),
|
||||
Padded: (inCloud:Cloud.M):Cloud.M=> inCloud.map((row:Cloud.V)=> [...row, 1])
|
||||
},
|
||||
Mutate:
|
||||
{
|
||||
Pad: (inCloud:Cloud.M):Cloud.M=> {inCloud.forEach((row:Cloud.V)=> row.push(1)); return inCloud; },
|
||||
Unpad: (inCloud:Cloud.M):Cloud.M=> {inCloud.forEach((row:Cloud.V)=> row.pop()); return inCloud; }
|
||||
},
|
||||
Test:
|
||||
{
|
||||
Dot:(v1:Cloud.V, v2:Cloud.V):number=>
|
||||
{
|
||||
return v1.reduce((sum, current, index)=> sum + current*v2[index]);
|
||||
}
|
||||
},
|
||||
Single:
|
||||
{
|
||||
Subtract: (inV1:Cloud.V, inV2:Cloud.V):Cloud.V=> inV1.map((component, i)=> component-inV2[i]),
|
||||
@ -56,9 +48,11 @@ const Methods = {
|
||||
Subtract: (inCloud1:Cloud.M, inCloud2:Cloud.M):Cloud.M=> inCloud1.map((row:Cloud.V, rowIndex:number)=> Methods.Single.Subtract(row, inCloud2[rowIndex])),
|
||||
Multiply: (inCloud1:Cloud.M, inCloud2:Cloud.M):Cloud.M=> inCloud1.map((row:Cloud.V, rowIndex:number)=> Methods.Single.Multiply(row, inCloud2[rowIndex])),
|
||||
Affine: (inCloud1:Cloud.M, inCloud2:Cloud.M):Cloud.M=> inCloud1.map((row:Cloud.V)=> Methods.Single.Affine(row, inCloud2)),
|
||||
Sigmoid: (inCloud:Cloud.M):Cloud.M=> Methods.Iterate.Edit(inCloud, i=>1/(1+Math.pow(Math.E, -i))),
|
||||
Derivative: (inCloud:Cloud.M):Cloud.M=> Methods.Iterate.Edit(inCloud, i=>i*(1-i)),
|
||||
Scale: (inCloud:Cloud.M, inScalar:number):Cloud.M=> Methods.Iterate.Edit(inCloud, i=>i*inScalar)
|
||||
Sig: (inCloud:Cloud.M):Cloud.M=> Methods.Iterate.Copy(inCloud, i=>1/(1+Math.pow(Math.E, -i))),
|
||||
SigDeriv: (inCloud:Cloud.M):Cloud.M=> Methods.Iterate.Copy(inCloud, i=>i*(1-i)),
|
||||
Rec: (inCloud:Cloud.M):Cloud.M=> Methods.Iterate.Copy(inCloud, i=> i<=0 ? 0 : i),
|
||||
RecDeriv: (inCloud:Cloud.M):Cloud.M=> Methods.Iterate.Copy(inCloud, i=> i<=0 ? 0 : 1),
|
||||
Scale: (inCloud:Cloud.M, inScalar:number):Cloud.M=> Methods.Iterate.Copy(inCloud, i=>i*inScalar)
|
||||
}
|
||||
};
|
||||
|
||||
|
14
methods.md
14
methods.md
@ -1,14 +0,0 @@
|
||||
box(boundingBox, count) // done
|
||||
transpose(inMatrix) // done
|
||||
outer(inv1, inv2) // done
|
||||
clone(inCloud) // done
|
||||
|
||||
pad(inCloud) // done
|
||||
unpad(inCloud) // done
|
||||
|
||||
transform(inCloud, inMatrix) // done
|
||||
sigmoid(inCloud) // 1/(1+e^x) // done
|
||||
derivative(inCloud) // x*(1-x) // done
|
||||
scale(inCloud1, inV) // done
|
||||
subtract(inCloud1, inCloud2) // done
|
||||
multiply(inCloud1, inCloud2) // done
|
@ -18,7 +18,7 @@ Deno.test("NN.Split", ()=>
|
||||
assert(output);
|
||||
assertEquals(input.length, output.length, "data split into equal input and output");
|
||||
|
||||
assertEquals(input[0].length, 3, "padded input");
|
||||
assertEquals(input[0].length, 2, "unpadded input");
|
||||
assertEquals(output[0].length, 2, "unpadded output");
|
||||
});
|
||||
|
||||
@ -27,7 +27,7 @@ Deno.test("NN.Build", ()=>
|
||||
layers = Build(2, 5, 2);
|
||||
|
||||
assertEquals(layers.length, 2, "correct number of matrices");
|
||||
assertEquals(layers[0][0].length, input[0].length, "input: padded input");
|
||||
assertEquals(layers[0][0].length, input[0].length+1, "input: padded input");
|
||||
assertEquals(layers[0].length, 5, "input: unpadded output");
|
||||
|
||||
assertEquals(layers[1][0].length, 6, "hidden: padded input");
|
||||
@ -43,7 +43,8 @@ Deno.test("NN.Label", ()=>
|
||||
|
||||
Deno.test("NN.Learn", ()=>
|
||||
{
|
||||
let error = Learn(input, layers, output, 1000, 0.1);
|
||||
let error = Learn(input, layers, output, 50, 0.2);
|
||||
console.log(error);
|
||||
assertEquals(error.length, output.length);
|
||||
let total = 0;
|
||||
let count = error.length*error[0].length;
|
||||
|
31
nn.ts
31
nn.ts
@ -5,7 +5,8 @@ const Forward = (inData:Cloud.M, inLayers:N):N =>
|
||||
{
|
||||
let i:number;
|
||||
let stages:N = [inData];
|
||||
let process = (index:number):Cloud.M => M.Batch.Sigmoid(M.Batch.Affine(stages[index], inLayers[index]));
|
||||
let nonLinear = (inIndex:number):any=> inIndex >= inLayers.length-1 ? M.Batch.Sig : M.Batch.Rec;
|
||||
let process = (index:number):Cloud.M => nonLinear(index)(M.Batch.Affine(stages[index], inLayers[index]));
|
||||
|
||||
for(i=0; i<inLayers.length-1; i++){ stages[i+1] = M.Mutate.Pad(process(i)); }
|
||||
stages[i+1] = process(i);
|
||||
@ -15,10 +16,11 @@ const Backward = (inStages:N, inLayers:N, inGoals:Cloud.M, inRate:number):N =>
|
||||
{
|
||||
let i:number;
|
||||
let errorBack:Cloud.M = M.Batch.Subtract(inStages[inStages.length-1], inGoals);
|
||||
let nonLinear = (inIndex:number):any=> inIndex >= inLayers.length-1 ? M.Batch.SigDeriv : M.Batch.RecDeriv;
|
||||
|
||||
for(i=inLayers.length-1; i>=0; i--)
|
||||
{
|
||||
let errorScaled:Cloud.M = M.Batch.Multiply(errorBack, M.Batch.Derivative(inStages[i+1]));
|
||||
let errorScaled:Cloud.M = M.Batch.Multiply(errorBack, nonLinear(i)(inStages[i+1]));
|
||||
errorBack = M.Batch.Affine(errorScaled, M.Create.Transpose(inLayers[i]));
|
||||
errorScaled.forEach((inScaledError:Cloud.V, inIndex:number)=>
|
||||
{
|
||||
@ -40,10 +42,8 @@ const Split = (inTrainingSet:Cloud.M, inHeaderLabel:Cloud.V, inHeaderKeep:Cloud.
|
||||
}
|
||||
inTrainingSet.forEach((row:Cloud.V):void =>
|
||||
{
|
||||
let vectorData = [ ...inHeaderKeep.map((i:number)=>row[i]), 1];
|
||||
let vectorLabel = inHeaderLabel.map((i:number)=>row[i])
|
||||
data.push( vectorData );
|
||||
label.push( vectorLabel );
|
||||
data.push( inHeaderKeep.map((i:number)=>row[i]) );
|
||||
label.push( inHeaderLabel.map((i:number)=>row[i]) );
|
||||
});
|
||||
return [ data, label ];
|
||||
};
|
||||
@ -58,17 +58,28 @@ const Build = (...inLayers:Array<number>):N =>
|
||||
}
|
||||
return output;
|
||||
};
|
||||
const Label = (inData:Cloud.M, inLayers:N):Cloud.M =>
|
||||
const Label = (inData:Cloud.M, inLayers:N, inRound:boolean):Cloud.M =>
|
||||
{
|
||||
let stages:N = Forward(inData, inLayers);
|
||||
return stages[stages.length-1];
|
||||
let stages:N = Forward(M.Create.Padded(inData), inLayers);
|
||||
let output = stages[stages.length-1];
|
||||
if(inRound)
|
||||
{
|
||||
output.forEach(row=>
|
||||
{
|
||||
row.forEach((cell, i)=>
|
||||
{
|
||||
row[i] = (Math.round(cell * 100) / 100);
|
||||
});
|
||||
});
|
||||
}
|
||||
return output;
|
||||
};
|
||||
const Learn = (inData:Cloud.M, inLayers:N, inLabels:Cloud.M, inIterations:number, inRate:number):Cloud.M =>
|
||||
{
|
||||
let stages:N = [];
|
||||
for(let i=0; i<inIterations; i++)
|
||||
{
|
||||
stages = Forward(inData, inLayers);
|
||||
stages = Forward(M.Create.Padded(inData), inLayers);
|
||||
Backward(stages, inLayers, inLabels, inRate);
|
||||
}
|
||||
return M.Batch.Subtract(stages[stages.length-1], inLabels);
|
||||
|
211
nn_old.js
211
nn_old.js
@ -1,211 +0,0 @@
|
||||
var NN = {};
|
||||
|
||||
NN.TrainingSet = {};
|
||||
NN.TrainingSet.Instances = [];
|
||||
NN.TrainingSet.Create = function()
|
||||
{
|
||||
var obj = {};
|
||||
|
||||
obj.Input = [];
|
||||
obj.Output = [];
|
||||
obj.Order = [];
|
||||
|
||||
NN.TrainingSet.Instances.push(obj);
|
||||
return obj;
|
||||
};
|
||||
NN.TrainingSet.AddPoint = function(inTrainingSet, inType, inData)
|
||||
{
|
||||
inTrainingSet.Input.push(inData);
|
||||
inTrainingSet.Output.push(inType);
|
||||
inTrainingSet.Order.push(inTrainingSet.Order.length);
|
||||
};
|
||||
NN.TrainingSet.AddCloud = function(inTrainingSet, inLabel, inCloud)
|
||||
{
|
||||
var i;
|
||||
for(i=0; i<inCloud.length; i++)
|
||||
{
|
||||
NN.TrainingSet.AddPoint(inTrainingSet, inLabel, inCloud[i]);
|
||||
}
|
||||
};
|
||||
NN.TrainingSet.Randomize = function(inTrainingSet)
|
||||
{
|
||||
var newOrder = [];
|
||||
var selection;
|
||||
while(inTrainingSet.Order.length != 0)
|
||||
{
|
||||
selection = Math.floor(inTrainingSet.Order.length * Math.random());
|
||||
inTrainingSet.Order.splice(selection, 1);
|
||||
newOrder.push(selection);
|
||||
}
|
||||
inTrainingSet.Order = newOrder;
|
||||
};
|
||||
|
||||
|
||||
NN.Layer = {};
|
||||
NN.Layer.Create = function(sizeIn, sizeOut)
|
||||
{
|
||||
var i;
|
||||
var min = [];
|
||||
var max = [];
|
||||
var obj = {};
|
||||
|
||||
sizeIn++;
|
||||
|
||||
obj.Forward = {};
|
||||
for(i=0; i<sizeIn; i++)
|
||||
{
|
||||
min.push(-1);
|
||||
max.push(1);
|
||||
}
|
||||
obj.Forward.Matrix = M.Box([min, max], sizeOut);
|
||||
obj.Forward.StageInput = [];
|
||||
obj.Forward.StageAffine = [];
|
||||
obj.Forward.StageSigmoid = [];
|
||||
obj.Forward.StageDerivative = [];
|
||||
|
||||
obj.Backward = {};
|
||||
obj.Backward.Matrix = M.Transpose(obj.Forward.Matrix);
|
||||
obj.Backward.StageInput = [];
|
||||
obj.Backward.StageDerivative = [];
|
||||
obj.Backward.StageAffine = [];
|
||||
|
||||
return obj;
|
||||
};
|
||||
NN.Layer.Forward = function(inLayer, inInput)
|
||||
{
|
||||
inLayer.Forward.StageInput = M.Pad(inInput); // Pad the input
|
||||
inLayer.Forward.StageAffine = M.Transform(inLayer.Forward.Matrix, inLayer.Forward.StageInput);
|
||||
inLayer.Forward.StageSigmoid = M.Sigmoid(inLayer.Forward.StageAffine);
|
||||
|
||||
return inLayer.Forward.StageSigmoid;
|
||||
};
|
||||
NN.Layer.Error = function(inLayer, inTarget)
|
||||
{
|
||||
return M.Subtract(inLayer.Forward.StageSigmoid, inTarget);
|
||||
};
|
||||
NN.Layer.Backward = function(inLayer, inInput)
|
||||
{
|
||||
/* We need the derivative of the forward pass, but only during the backward pass.
|
||||
That's why-- even though it "belongs" to the forward pass-- it is being calculated here. */
|
||||
inLayer.Forward.StageDerivative = M.Derivative(inLayer.Forward.StageSigmoid);
|
||||
|
||||
/* This transpose matrix is for sending the error back to a previous layer.
|
||||
And again, even though it is derived directly from the forward matrix, it is only needed during the backward pass so we calculate it here.*/
|
||||
inLayer.Backward.Matrix = M.Transpose(inLayer.Forward.Matrix);
|
||||
|
||||
/* When the error vector arrives at a layer, it always needs to be multiplied (read 'supressed') by the derivative of
|
||||
what the layer output earlier during the forward pass.
|
||||
So despite its name, Backward.StageDerivative contains the result of this *multiplication* and not some new derivative calculation.*/
|
||||
inLayer.Backward.StageInput = inInput;
|
||||
inLayer.Backward.StageDerivative = M.Multiply(inLayer.Backward.StageInput, inLayer.Forward.StageDerivative);
|
||||
inLayer.Backward.StageAffine = M.Transform(inLayer.Backward.Matrix, inLayer.Backward.StageDerivative);
|
||||
|
||||
return M.Unpad(inLayer.Backward.StageAffine);// Unpad the output
|
||||
};
|
||||
NN.Layer.Adjust = function(inLayer, inLearningRate)
|
||||
{
|
||||
var deltas;
|
||||
var vector;
|
||||
var scalar;
|
||||
var i, j;
|
||||
|
||||
for(i=0; i<inLayer.Forward.StageInput.length; i++)
|
||||
{
|
||||
deltas = M.Outer(inLayer.Forward.StageInput[i], inLayer.Backward.StageDerivative[i]);
|
||||
deltas = M.Scale(deltas, inLearningRate);
|
||||
|
||||
inLayer.Forward.Matrix = M.Subtract(inLayer.Forward.Matrix, deltas);
|
||||
}
|
||||
};
|
||||
NN.Layer.Stochastic = function(inLayer, inTrainingSet, inIterations)
|
||||
{
|
||||
/* this method is ONLY for testing individual layers, and does not translate to network-level training */
|
||||
var i, j;
|
||||
var current;
|
||||
var error;
|
||||
for(i=0; i<inIterations; i++)
|
||||
{
|
||||
NN.TrainingSet.Randomize(inTrainingSet);
|
||||
for(j=0; j<inTrainingSet.Order.length; j++)
|
||||
{
|
||||
current = inTrainingSet.Order[j];
|
||||
NN.Layer.Forward(inLayer, [inTrainingSet.Input[current]]);
|
||||
error = M.Subtract(inLayer.Forward.StageSigmoid, [inTrainingSet.Output[current]]);
|
||||
NN.Layer.Backward(inLayer, error);
|
||||
NN.Layer.Adjust(inLayer, 0.1);
|
||||
}
|
||||
}
|
||||
};
|
||||
|
||||
NN.Network = {};
|
||||
NN.Network.Instances = [];
|
||||
NN.Network.Create = function()
|
||||
{
|
||||
var obj = {};
|
||||
var i;
|
||||
|
||||
obj.Layers = [];
|
||||
obj.LearningRate = 0.8;
|
||||
obj.Error = [];
|
||||
|
||||
for(i=0; i<arguments.length-1; i++)
|
||||
{
|
||||
obj.Layers.push(NN.Layer.Create(arguments[i], arguments[i+1]));
|
||||
}
|
||||
|
||||
NN.Network.Instances.push(obj);
|
||||
return obj;
|
||||
};
|
||||
NN.Network.Observe = function(inNetwork, inBatch)
|
||||
{
|
||||
var input = M.Clone(inBatch);
|
||||
var i;
|
||||
for(i=0; i<inNetwork.Layers.length; i++)
|
||||
{
|
||||
input = NN.Layer.Forward(inNetwork.Layers[i], input);
|
||||
}
|
||||
return inNetwork.Layers[inNetwork.Layers.length-1].Forward.StageSigmoid;
|
||||
};
|
||||
NN.Network.Error = function(inNetwork, inTraining)
|
||||
{
|
||||
return M.Subtract(inNetwork.Layers[inNetwork.Layers.length-1].Forward.StageSigmoid, inTraining);
|
||||
};
|
||||
NN.Network.Learn = function(inNetwork, inError)
|
||||
{
|
||||
var input = inError;
|
||||
var i;
|
||||
for(i=inNetwork.Layers.length-1; i>=0; i--)
|
||||
{
|
||||
input = NN.Layer.Backward(inNetwork.Layers[i], input);
|
||||
NN.Layer.Adjust(inNetwork.Layers[i], inNetwork.LearningRate);
|
||||
}
|
||||
};
|
||||
|
||||
|
||||
NN.Network.Batch = function(inNetwork, inTrainingSet, inIterations)
|
||||
{
|
||||
var i;
|
||||
for(i=0; i<inIterations; i++)
|
||||
{
|
||||
NN.Network.Observe(inNetwork, inTrainingSet.Input);
|
||||
inNetwork.Error = NN.Network.Error(inNetwork, inTrainingSet.Output)
|
||||
NN.Network.Learn(inNetwork, inNetwork.Error);
|
||||
}
|
||||
};
|
||||
NN.Network.Stochastic = function(inNetwork, inTrainingSet, inIterations)
|
||||
{
|
||||
var i, j;
|
||||
var current;
|
||||
|
||||
for(i=0; i<inIterations; i++)
|
||||
{
|
||||
NN.TrainingSet.Randomize(inTrainingSet);
|
||||
for(j=0; j<inTrainingSet.Order.length; j++)
|
||||
{
|
||||
current = inTrainingSet.Order[j];
|
||||
NN.Network.Observe(inNetwork, [inTrainingSet.Input[current]]);
|
||||
inNetwork.Error = NN.Network.Error(inNetwork, [inTrainingSet.Output[current]]);
|
||||
NN.Network.Learn(inNetwork, inNetwork.Error);
|
||||
}
|
||||
}
|
||||
};
|
Loading…
Reference in New Issue
Block a user