Compare commits
2 Commits
master
...
b1c95d4819
Author | SHA1 | Date | |
---|---|---|---|
b1c95d4819 | |||
94c7abdda5 |
717
index.html
717
index.html
@ -1,717 +0,0 @@
|
||||
<script>
|
||||
/* Vector Library */
|
||||
/*
|
||||
Works with n-dimensional vectors: represented as arrays of numbers
|
||||
*/
|
||||
var V = {};
|
||||
V.Subtract = function(inV1, inV2)
|
||||
{
|
||||
var out = [];
|
||||
for(var i=0; i<inV1.length; i++)
|
||||
{
|
||||
out[i] = inV1[i] - inV2[i];
|
||||
}
|
||||
return out;
|
||||
};
|
||||
V.Add = function(inV1, inV2)
|
||||
{
|
||||
var out = [];
|
||||
for(var i=0; i<inV1.length; i++)
|
||||
{
|
||||
out[i] = inV1[i] + inV2[i];
|
||||
}
|
||||
return out;
|
||||
};
|
||||
V.Distance = function(inV1, inV2)
|
||||
{
|
||||
return V.Length(V.Subtract(inV1, inV2))
|
||||
};
|
||||
V.Dot = function(inV1, inV2)
|
||||
{
|
||||
var out = 0;
|
||||
for(var i=0; i<inV1.length; i++)
|
||||
{
|
||||
out += inV1[i] * inV2[i];
|
||||
}
|
||||
return out;
|
||||
};
|
||||
V.Multiply = function(inV1, inV2)
|
||||
{
|
||||
var out = [];
|
||||
for(var i=0; i<inV1.length; i++)
|
||||
{
|
||||
out[i] = inV1[i] * inV2[i];
|
||||
}
|
||||
return out;
|
||||
};
|
||||
V.Length = function(inV1)
|
||||
{
|
||||
return Math.sqrt(V.Dot(inV1, inV1));
|
||||
};
|
||||
V.Scale = function(inV1, inScalar)
|
||||
{
|
||||
var out = [];
|
||||
for(var i=0; i<inV1.length; i++)
|
||||
{
|
||||
out[i] = inV1[i] * inScalar;
|
||||
}
|
||||
return out;
|
||||
};
|
||||
V.Normalize = function(inV1)
|
||||
{
|
||||
return V.Scale(inV1, 1/V.Length(inV1));
|
||||
};
|
||||
V.Clone = function(inV1)
|
||||
{
|
||||
var out = [];
|
||||
var i;
|
||||
for(i=0; i<inV1.length; i++)
|
||||
{
|
||||
out[i] = inV1[i];
|
||||
}
|
||||
return out;
|
||||
};
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
var M = {};
|
||||
|
||||
/**************************
|
||||
M A T R I X
|
||||
*/
|
||||
// transform inC with inM
|
||||
// returns the transformed inC
|
||||
M.Transform = function(inM, inC)
|
||||
{
|
||||
var outM = [];
|
||||
var outV = [];
|
||||
var i, j;
|
||||
|
||||
for(i=0; i<inC.length; i++)
|
||||
{
|
||||
outV = [];
|
||||
for(j=0; j<inM.length; j++)
|
||||
{
|
||||
outV[j] = V.Dot(inM[j], inC[i]);
|
||||
}
|
||||
outM.push(outV);
|
||||
}
|
||||
return outM;
|
||||
};
|
||||
|
||||
|
||||
// flip rows for columns in inM
|
||||
// returns the modified Matrix
|
||||
M.Transpose = function(inM)
|
||||
{
|
||||
var dimensions = inM[0].length;
|
||||
var i, j;
|
||||
var outM = [];
|
||||
var outV = [];
|
||||
for(i=0; i<dimensions; i++)
|
||||
{
|
||||
outV = [];
|
||||
for(j=0; j<inM.length; j++)
|
||||
{
|
||||
//the Ith componenth of the Jth member
|
||||
outV[j] = inM[j][i];
|
||||
}
|
||||
outM.push(outV);
|
||||
}
|
||||
return outM;
|
||||
}
|
||||
|
||||
// returns a matrix that is the result of the outer product of inV1 and inV2
|
||||
// where the Nth member of outM is a copy of V1, scaled by the Nth component of V2
|
||||
M.Outer = function(inV1, inV2)
|
||||
{
|
||||
var outM = [];
|
||||
|
||||
var i;
|
||||
for(i=0; i<inV2.length; i++)
|
||||
{
|
||||
outM.push(V.Scale(inV1, inV2[i]));
|
||||
}
|
||||
|
||||
return outM;
|
||||
};
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
/**************************
|
||||
B A T C H
|
||||
*/
|
||||
//smash the members of inM with a softmax
|
||||
M.Sigmoid = function(inM)
|
||||
{
|
||||
var i, j;
|
||||
var outM = [];
|
||||
var outV = [];
|
||||
for(i=0; i<inM.length; i++)
|
||||
{
|
||||
outV = [];
|
||||
for(j=0; j<inM[i].length; j++)
|
||||
{
|
||||
outV[j] = 1/(1 + Math.pow(Math.E, -inM[i][j]));
|
||||
}
|
||||
outM.push(outV);
|
||||
}
|
||||
return outM;
|
||||
};
|
||||
// return the derivatives of the members of inM (that have been run through the softmax)
|
||||
M.Derivative = function(inM)
|
||||
{
|
||||
var i, j;
|
||||
var component;
|
||||
var outM = [];
|
||||
var outV = [];
|
||||
for(i=0; i<inM.length; i++)
|
||||
{
|
||||
outV = [];
|
||||
for(j=0; j<inM[i].length; j++)
|
||||
{
|
||||
component = inM[i][j];
|
||||
outV[j] = component*(1 - component);
|
||||
}
|
||||
outM.push(outV);
|
||||
}
|
||||
return outM;
|
||||
};
|
||||
// batch multiply these pairs of vectors
|
||||
M.Multiply = function(inCloud1, inCloud2)
|
||||
{
|
||||
var i;
|
||||
var outM = [];
|
||||
for(i=0; i<inCloud1.length; i++)
|
||||
{
|
||||
outM.push(V.Multiply(inCloud1[i], inCloud2[i]));
|
||||
};
|
||||
return outM;
|
||||
};
|
||||
// batch add
|
||||
M.Add = function(inCloud1, inCloud2)
|
||||
{
|
||||
var outM = [];
|
||||
|
||||
var i;
|
||||
for(i=0; i<inCloud1.length; i++)
|
||||
{
|
||||
outM.push(V.Add(inCloud1[i], inCloud2[i]));
|
||||
}
|
||||
return outM;
|
||||
};
|
||||
M.Subtract = function(inCloud1, inCloud2)
|
||||
{
|
||||
var outM = [];
|
||||
|
||||
var i;
|
||||
for(i=0; i<inCloud1.length; i++)
|
||||
{
|
||||
outM.push(V.Subtract(inCloud1[i], inCloud2[i]));
|
||||
}
|
||||
return outM;
|
||||
};
|
||||
M.Scale = function(inCloud1, inScalar)
|
||||
{
|
||||
var outM = [];
|
||||
|
||||
var i;
|
||||
for(i=0; i<inCloud1.length; i++)
|
||||
{
|
||||
outM.push(V.Scale(inCloud1[i], inScalar));
|
||||
}
|
||||
return outM;
|
||||
};
|
||||
M.Clone = function(inM)
|
||||
{
|
||||
var i;
|
||||
var outM;
|
||||
var outV;
|
||||
|
||||
outM =[];
|
||||
for(i=0; i<inM.length; i++)
|
||||
{
|
||||
outM.push(V.Clone(inM[i]));
|
||||
}
|
||||
return outM;
|
||||
};
|
||||
|
||||
|
||||
/**************************
|
||||
B O U N D S
|
||||
*/
|
||||
// return the bounding box of inM as a two-member Matrix
|
||||
M.Bounds = function(inM)
|
||||
{
|
||||
var dimensions = inM[0].length;
|
||||
var i, j;
|
||||
var min = [];
|
||||
var max = [];
|
||||
for(i=0; i<dimensions; i++)
|
||||
{
|
||||
min[i] = 9999999;
|
||||
max[i] = -999999;
|
||||
}
|
||||
for(i=0; i<inM.length; i++)
|
||||
{
|
||||
for(j=0; j<dimensions; j++)
|
||||
{
|
||||
if(inM[i][j] < min[j])
|
||||
{
|
||||
min[j] = inM[i][j];
|
||||
}
|
||||
if(inM[i][j] > max[j])
|
||||
{
|
||||
max[j] = inM[i][j];
|
||||
}
|
||||
}
|
||||
}
|
||||
return [min, max];
|
||||
};
|
||||
|
||||
// find the local coordinates for all the members of inM, within the bounding box inB
|
||||
// returns a new Matrix of relative vectors
|
||||
M.GlobalToLocal = function(inM, inB)
|
||||
{
|
||||
var dimensions = inB[0].length;
|
||||
var i, j;
|
||||
var outM = [];
|
||||
var outV = [];
|
||||
var size;
|
||||
var min;
|
||||
var denominator;
|
||||
for(i=0; i<inM.length; i++)
|
||||
{
|
||||
outV = [];
|
||||
for(j=0; j<dimensions; j++)
|
||||
{
|
||||
denominator = inB[1][j] - inB[0][j];
|
||||
if(denominator == 0)
|
||||
{
|
||||
outV[j] = inB[1][j];// if min and max are the same, just output max
|
||||
}
|
||||
else
|
||||
{
|
||||
outV[j] = (inM[i][j] - inB[0][j])/denominator;
|
||||
}
|
||||
}
|
||||
outM.push(outV);
|
||||
}
|
||||
return outM;
|
||||
};
|
||||
// find the global coordinates for all the members of inM, within the bounding box inB
|
||||
// returns a new Matrix of global vectors
|
||||
M.LocalToGlobal = function(inM, inB)
|
||||
{
|
||||
var dimensions = inB[0].length;
|
||||
var i, j;
|
||||
var outM = [];
|
||||
var outV = [];
|
||||
var size;
|
||||
var min;
|
||||
for(i=0; i<inM.length; i++)
|
||||
{
|
||||
outV = [];
|
||||
for(j=0; j<dimensions; j++)
|
||||
{
|
||||
outV[j] = inB[0][j] + inM[i][j] * (inB[1][j] - inB[0][j]);
|
||||
}
|
||||
outM.push(outV);
|
||||
}
|
||||
return outM;
|
||||
};
|
||||
|
||||
|
||||
/**************************
|
||||
C L O U D
|
||||
*/
|
||||
// return some number of points from inM as a new Matrix
|
||||
M.Reduce = function(inM, inCount)
|
||||
{
|
||||
var largeGroupSize;
|
||||
var largeGroupCount;
|
||||
var smallGroupSize;
|
||||
var outM = [];
|
||||
|
||||
largeGroupSize = Math.floor(inM.length/inM);
|
||||
smallGroupSize = inM.length%inCount
|
||||
for(i=0; i<inM-1; i++)
|
||||
{
|
||||
index = i*largeGroupSize + Math.floor(Math.random()*largeGroupSize);
|
||||
outM.push( V.Clone(inM[index]) );
|
||||
}
|
||||
if(smallGroupSize != 0)
|
||||
{
|
||||
index = i*largeGroupSize + Math.floor(Math.random()*smallGroupSize)
|
||||
outM.push( V.Clone(inM[index]) );
|
||||
}
|
||||
return outM;
|
||||
};
|
||||
|
||||
// return a Matrix of length inCount, where all the members fall within the circle paramemters, including a bias
|
||||
M.Circle = function(inCenter, inRadius, inBias, inCount)
|
||||
{
|
||||
var i, j;
|
||||
var vector;
|
||||
var length;
|
||||
var outM = [];
|
||||
|
||||
for(i=0; i<inCount; i++)
|
||||
{
|
||||
//generate a random vector
|
||||
vector = [];
|
||||
for(j=0; j<inCenter.length; j++)
|
||||
{
|
||||
vector[j] = (Math.random() - 0.5);
|
||||
}
|
||||
|
||||
//normalize the vector
|
||||
vector = V.Scale(vector, 1/V.Length(vector));
|
||||
|
||||
//set a random length (with a bias)
|
||||
length = Math.pow(Math.random(), Math.log(inBias)/Math.log(0.5))*inRadius;
|
||||
vector = V.Scale(vector, length);
|
||||
|
||||
//move the vector to the center
|
||||
vector = V.Add(vector, inCenter);
|
||||
|
||||
outM.push(vector);
|
||||
}
|
||||
return outM;
|
||||
};
|
||||
|
||||
// return a Matrix of length inCount, where all the members fall within inBounds
|
||||
M.Box = function(inBounds, inCount)
|
||||
{
|
||||
var vector;
|
||||
var dimensions = inBounds[0].length;
|
||||
var i, j;
|
||||
var min, max;
|
||||
var outM = [];
|
||||
|
||||
for(i=0; i<inCount; i++)
|
||||
{
|
||||
vector = [];
|
||||
for(j=0; j<dimensions; j++)
|
||||
{
|
||||
min = inBounds[0][j];
|
||||
max = inBounds[1][j];
|
||||
|
||||
vector[j] = min + Math.random()*(max - min);
|
||||
}
|
||||
outM.push(vector);
|
||||
}
|
||||
return outM;
|
||||
};
|
||||
|
||||
//combine all the matricies in inList into one long Matrix
|
||||
M.Combine = function(inList)
|
||||
{
|
||||
var i, j;
|
||||
var outM = [];
|
||||
for(i=0; i<inList.length; i++)
|
||||
{
|
||||
for(j=0; j<inList[i].length; j++)
|
||||
{
|
||||
outM.push(V.Clone(inList[i][j]));
|
||||
}
|
||||
}
|
||||
return outM;
|
||||
};
|
||||
|
||||
/*
|
||||
PLEASE NOTE: These padding routines are unique to this library in that they
|
||||
actually modify the input object(s) rather than returning modified copies!
|
||||
*/
|
||||
// add a new component (set to '1') to each member of inM
|
||||
M.Pad = function(inM)
|
||||
{
|
||||
var i;
|
||||
for(i=0; i<inM.length; i++)
|
||||
{
|
||||
inM[i].push(1);
|
||||
}
|
||||
return inM;
|
||||
};
|
||||
// remove the last component of each memeber of inM
|
||||
M.Unpad = function(inM)
|
||||
{
|
||||
var i;
|
||||
for(i=0; i<inM.length; i++)
|
||||
{
|
||||
inM[i].pop();
|
||||
}
|
||||
return inM;
|
||||
};
|
||||
// set the last component of each member of inM to 1
|
||||
M.Repad = function(inM)
|
||||
{
|
||||
var i;
|
||||
var last = inM[0].length-1;
|
||||
for(i=0; i<inM.length; i++)
|
||||
{
|
||||
inM[i][last] = 1;
|
||||
}
|
||||
return inM;
|
||||
};
|
||||
</script>
|
||||
|
||||
<script>
|
||||
var NN = {};
|
||||
|
||||
NN.TrainingSet = {};
|
||||
NN.TrainingSet.Instances = [];
|
||||
NN.TrainingSet.Create = function()
|
||||
{
|
||||
var obj = {};
|
||||
|
||||
obj.Input = [];
|
||||
obj.Output = [];
|
||||
obj.Order = [];
|
||||
|
||||
NN.TrainingSet.Instances.push(obj);
|
||||
return obj;
|
||||
};
|
||||
NN.TrainingSet.AddPoint = function(inTrainingSet, inType, inData)
|
||||
{
|
||||
inTrainingSet.Input.push(inData);
|
||||
inTrainingSet.Output.push(inType);
|
||||
inTrainingSet.Order.push(inTrainingSet.Order.length);
|
||||
};
|
||||
NN.TrainingSet.AddCloud = function(inTrainingSet, inLabel, inCloud)
|
||||
{
|
||||
var i;
|
||||
for(i=0; i<inCloud.length; i++)
|
||||
{
|
||||
NN.TrainingSet.AddPoint(inTrainingSet, inLabel, inCloud[i]);
|
||||
}
|
||||
};
|
||||
NN.TrainingSet.Randomize = function(inTrainingSet)
|
||||
{
|
||||
var newOrder = [];
|
||||
var selection;
|
||||
while(inTrainingSet.Order.length != 0)
|
||||
{
|
||||
selection = Math.floor(inTrainingSet.Order.length * Math.random());
|
||||
inTrainingSet.Order.splice(selection, 1);
|
||||
newOrder.push(selection);
|
||||
}
|
||||
inTrainingSet.Order = newOrder;
|
||||
};
|
||||
|
||||
|
||||
NN.Layer = {};
|
||||
NN.Layer.Create = function(sizeIn, sizeOut)
|
||||
{
|
||||
var i;
|
||||
var min = [];
|
||||
var max = [];
|
||||
var obj = {};
|
||||
|
||||
sizeIn++;
|
||||
|
||||
obj.Forward = {};
|
||||
for(i=0; i<sizeIn; i++)
|
||||
{
|
||||
min.push(-1);
|
||||
max.push(1);
|
||||
}
|
||||
obj.Forward.Matrix = M.Box([min, max], sizeOut);
|
||||
obj.Forward.StageInput = [];
|
||||
obj.Forward.StageAffine = [];
|
||||
obj.Forward.StageSigmoid = [];
|
||||
obj.Forward.StageDerivative = [];
|
||||
|
||||
obj.Backward = {};
|
||||
obj.Backward.Matrix = M.Transpose(obj.Forward.Matrix);
|
||||
obj.Backward.StageInput = [];
|
||||
obj.Backward.StageDerivative = [];
|
||||
obj.Backward.StageAffine = [];
|
||||
|
||||
return obj;
|
||||
};
|
||||
NN.Layer.Forward = function(inLayer, inInput)
|
||||
{
|
||||
inLayer.Forward.StageInput = M.Pad(inInput); // Pad the input
|
||||
inLayer.Forward.StageAffine = M.Transform(inLayer.Forward.Matrix, inLayer.Forward.StageInput);
|
||||
inLayer.Forward.StageSigmoid = M.Sigmoid(inLayer.Forward.StageAffine);
|
||||
|
||||
return inLayer.Forward.StageSigmoid;
|
||||
};
|
||||
NN.Layer.Error = function(inLayer, inTarget)
|
||||
{
|
||||
return M.Subtract(inLayer.Forward.StageSigmoid, inTarget);
|
||||
};
|
||||
NN.Layer.Backward = function(inLayer, inInput)
|
||||
{
|
||||
/* We need the derivative of the forward pass, but only during the backward pass.
|
||||
That's why-- even though it "belongs" to the forward pass-- it is being calculated here. */
|
||||
inLayer.Forward.StageDerivative = M.Derivative(inLayer.Forward.StageSigmoid);
|
||||
|
||||
/* This transpose matrix is for sending the error back to a previous layer.
|
||||
And again, even though it is derived directly from the forward matrix, it is only needed during the backward pass so we calculate it here.*/
|
||||
inLayer.Backward.Matrix = M.Transpose(inLayer.Forward.Matrix);
|
||||
|
||||
/* When the error vector arrives at a layer, it always needs to be multiplied (read 'supressed') by the derivative of
|
||||
what the layer output earlier during the forward pass.
|
||||
So despite its name, Backward.StageDerivative contains the result of this *multiplication* and not some new derivative calculation.*/
|
||||
inLayer.Backward.StageInput = inInput;
|
||||
inLayer.Backward.StageDerivative = M.Multiply(inLayer.Backward.StageInput, inLayer.Forward.StageDerivative);
|
||||
inLayer.Backward.StageAffine = M.Transform(inLayer.Backward.Matrix, inLayer.Backward.StageDerivative);
|
||||
|
||||
return M.Unpad(inLayer.Backward.StageAffine);// Unpad the output
|
||||
};
|
||||
NN.Layer.Adjust = function(inLayer, inLearningRate)
|
||||
{
|
||||
var deltas;
|
||||
var vector;
|
||||
var scalar;
|
||||
var i, j;
|
||||
|
||||
for(i=0; i<inLayer.Forward.StageInput.length; i++)
|
||||
{
|
||||
deltas = M.Outer(inLayer.Forward.StageInput[i], inLayer.Backward.StageDerivative[i]);
|
||||
deltas = M.Scale(deltas, inLearningRate);
|
||||
|
||||
inLayer.Forward.Matrix = M.Subtract(inLayer.Forward.Matrix, deltas);
|
||||
}
|
||||
};
|
||||
NN.Layer.Stochastic = function(inLayer, inTrainingSet, inIterations)
|
||||
{
|
||||
/* this method is ONLY for testing individual layers, and does not translate to network-level training */
|
||||
var i, j;
|
||||
var current;
|
||||
var error;
|
||||
for(i=0; i<inIterations; i++)
|
||||
{
|
||||
NN.TrainingSet.Randomize(inTrainingSet);
|
||||
for(j=0; j<inTrainingSet.Order.length; j++)
|
||||
{
|
||||
current = inTrainingSet.Order[j];
|
||||
NN.Layer.Forward(inLayer, [inTrainingSet.Input[current]]);
|
||||
error = M.Subtract(inLayer.Forward.StageSigmoid, [inTrainingSet.Output[current]]);
|
||||
NN.Layer.Backward(inLayer, error);
|
||||
NN.Layer.Adjust(inLayer, 0.1);
|
||||
}
|
||||
}
|
||||
};
|
||||
|
||||
NN.Network = {};
|
||||
NN.Network.Instances = [];
|
||||
NN.Network.Create = function()
|
||||
{
|
||||
var obj = {};
|
||||
var i;
|
||||
|
||||
obj.Layers = [];
|
||||
obj.LearningRate = 0.1;
|
||||
obj.Error = [];
|
||||
|
||||
for(i=0; i<arguments.length-1; i++)
|
||||
{
|
||||
obj.Layers.push(NN.Layer.Create(arguments[i], arguments[i+1]));
|
||||
}
|
||||
|
||||
NN.Network.Instances.push(obj);
|
||||
return obj;
|
||||
};
|
||||
NN.Network.Observe = function(inNetwork, inBatch)
|
||||
{
|
||||
var input = M.Clone(inBatch);
|
||||
var i;
|
||||
for(i=0; i<inNetwork.Layers.length; i++)
|
||||
{
|
||||
input = NN.Layer.Forward(inNetwork.Layers[i], input);
|
||||
}
|
||||
return inNetwork.Layers[inNetwork.Layers.length-1].Forward.StageSigmoid;
|
||||
};
|
||||
NN.Network.Error = function(inNetwork, inTraining)
|
||||
{
|
||||
return M.Subtract(inNetwork.Layers[inNetwork.Layers.length-1].Forward.StageSigmoid, inTraining);
|
||||
};
|
||||
NN.Network.Learn = function(inNetwork, inError)
|
||||
{
|
||||
var input = inError;
|
||||
var i;
|
||||
for(i=inNetwork.Layers.length-1; i>=0; i--)
|
||||
{
|
||||
input = NN.Layer.Backward(inNetwork.Layers[i], input);
|
||||
NN.Layer.Adjust(inNetwork.Layers[i], inNetwork.LearningRate);
|
||||
}
|
||||
};
|
||||
|
||||
|
||||
NN.Network.Batch = function(inNetwork, inTrainingSet, inIterations)
|
||||
{
|
||||
var i;
|
||||
for(i=0; i<inIterations; i++)
|
||||
{
|
||||
NN.Network.Observe(inNetwork, inTrainingSet.Input);
|
||||
inNetwork.Error = NN.Network.Error(inNetwork, inTrainingSet.Output)
|
||||
NN.Network.Learn(inNetwork, inNetwork.Error);
|
||||
}
|
||||
};
|
||||
NN.Network.Stochastic = function(inNetwork, inTrainingSet, inIterations)
|
||||
{
|
||||
var i, j;
|
||||
var current;
|
||||
|
||||
for(i=0; i<inIterations; i++)
|
||||
{
|
||||
NN.TrainingSet.Randomize(inTrainingSet);
|
||||
for(j=0; j<inTrainingSet.Order.length; j++)
|
||||
{
|
||||
current = inTrainingSet.Order[j];
|
||||
NN.Network.Observe(inNetwork, [inTrainingSet.Input[current]]);
|
||||
inNetwork.Error = NN.Network.Error(inNetwork, [inTrainingSet.Output[current]]);
|
||||
NN.Network.Learn(inNetwork, inNetwork.Error);
|
||||
}
|
||||
}
|
||||
};
|
||||
</script>
|
||||
|
||||
<script>
|
||||
let matrix1 = [
|
||||
[-0.43662948305036675, -0.368590640707799, -0.23227179558890843],
|
||||
[-0.004292653969505622, 0.38670055222186317, -0.2478421495365568],
|
||||
[0.738181366836224, 0.3389203747353555, 0.4920200816404332]
|
||||
];
|
||||
|
||||
let matrix2 = [
|
||||
[0.7098703863463034, 0.35485944251238033, 0.7642849892333241, 0.03046174288491077],
|
||||
[-0.30655426258144347, 0.45509633551425077, -0.5013795222004322, -0.3421292736637427]
|
||||
];
|
||||
|
||||
let input = [
|
||||
[ 0.1, 0.05],
|
||||
[ 0.0, -0.06],
|
||||
[ 0.99, 0.85],
|
||||
[ 1.2, 1.05]
|
||||
];
|
||||
let output = [
|
||||
[1, 0],
|
||||
[1, 0],
|
||||
[0, 1],
|
||||
[0, 1]
|
||||
];
|
||||
|
||||
let nn1 = NN.Network.Create(2, 3, 2);
|
||||
nn1.Layers[0].Forward.Matrix = matrix1;
|
||||
nn1.Layers[1].Forward.Matrix = matrix2;
|
||||
nn1.LearningRate = 0.1;
|
||||
//let logLayers = inNN => inNN.Layers.forEach(L=>console.log(L.Forward.Matrix));
|
||||
|
||||
NN.Network.Batch(nn1, {Input:input, Output:output}, 1000);
|
||||
console.log(NN.Network.Observe(nn1, input));
|
||||
|
||||
</script>
|
11
index.js
Normal file
11
index.js
Normal file
@ -0,0 +1,11 @@
|
||||
import { Build, Learn, Label } from "./nn.ts";
|
||||
|
||||
const inputs = [[0.10, 0.50], [0.00, 0.06], [0.99, 0.85], [0.80, 0.95]];
|
||||
const labels = [[ 0, 1 ], [ 0, 1 ], [ 1, 0 ], [ 1, 0 ]];
|
||||
|
||||
const layers = Build(2, 5, 2);
|
||||
const errors = Learn(inputs, layers, labels, 1000, 0.1);
|
||||
const output = Label(inputs, layers);
|
||||
|
||||
console.log("error after training:", errors);
|
||||
console.log("re-classified inputs:", output);
|
3
m.ts
3
m.ts
@ -31,7 +31,8 @@ const Methods = {
|
||||
Box: (inV1:Cloud.V, inV2:Cloud.V, inCount:number):Cloud.M=> Methods.Iterate.Loop(inV1.length, inCount, i=> inV1[i]+(inV2[i]-inV1[i])*Math.random()),
|
||||
Transpose: (inCloud:Cloud.M):Cloud.M=> Methods.Iterate.Loop(inCloud.length, inCloud[0].length, (i, row)=> inCloud[i][row]),
|
||||
Outer: (inV1:Cloud.V, inV2:Cloud.V):Cloud.M=> Methods.Iterate.Loop(inV1.length, inV2.length, (i, row)=> inV1[i]*inV2[row]),
|
||||
Clone: (inCloud:Cloud.M):Cloud.M=> Methods.Iterate.Edit(inCloud, i=> i)
|
||||
Clone: (inCloud:Cloud.M):Cloud.M=> Methods.Iterate.Edit(inCloud, i=> i),
|
||||
Padded: (inCloud:Cloud.M):Cloud.M=> inCloud.map((row:Cloud.V)=> [...row, 1])
|
||||
},
|
||||
Mutate:
|
||||
{
|
||||
|
14
methods.md
14
methods.md
@ -1,14 +0,0 @@
|
||||
box(boundingBox, count) // done
|
||||
transpose(inMatrix) // done
|
||||
outer(inv1, inv2) // done
|
||||
clone(inCloud) // done
|
||||
|
||||
pad(inCloud) // done
|
||||
unpad(inCloud) // done
|
||||
|
||||
transform(inCloud, inMatrix) // done
|
||||
sigmoid(inCloud) // 1/(1+e^x) // done
|
||||
derivative(inCloud) // x*(1-x) // done
|
||||
scale(inCloud1, inV) // done
|
||||
subtract(inCloud1, inCloud2) // done
|
||||
multiply(inCloud1, inCloud2) // done
|
@ -17,8 +17,9 @@ Deno.test("NN.Split", ()=>
|
||||
assert(input);
|
||||
assert(output);
|
||||
assertEquals(input.length, output.length, "data split into equal input and output");
|
||||
console.log(output);
|
||||
|
||||
assertEquals(input[0].length, 3, "padded input");
|
||||
assertEquals(input[0].length, 2, "unpadded input");
|
||||
assertEquals(output[0].length, 2, "unpadded output");
|
||||
});
|
||||
|
||||
@ -27,7 +28,7 @@ Deno.test("NN.Build", ()=>
|
||||
layers = Build(2, 5, 2);
|
||||
|
||||
assertEquals(layers.length, 2, "correct number of matrices");
|
||||
assertEquals(layers[0][0].length, input[0].length, "input: padded input");
|
||||
assertEquals(layers[0][0].length, input[0].length+1, "input: padded input");
|
||||
assertEquals(layers[0].length, 5, "input: unpadded output");
|
||||
|
||||
assertEquals(layers[1][0].length, 6, "hidden: padded input");
|
||||
|
10
nn.ts
10
nn.ts
@ -40,10 +40,8 @@ const Split = (inTrainingSet:Cloud.M, inHeaderLabel:Cloud.V, inHeaderKeep:Cloud.
|
||||
}
|
||||
inTrainingSet.forEach((row:Cloud.V):void =>
|
||||
{
|
||||
let vectorData = [ ...inHeaderKeep.map((i:number)=>row[i]), 1];
|
||||
let vectorLabel = inHeaderLabel.map((i:number)=>row[i])
|
||||
data.push( vectorData );
|
||||
label.push( vectorLabel );
|
||||
data.push( inHeaderKeep.map((i:number)=>row[i]) );
|
||||
label.push( inHeaderLabel.map((i:number)=>row[i]) );
|
||||
});
|
||||
return [ data, label ];
|
||||
};
|
||||
@ -60,7 +58,7 @@ const Build = (...inLayers:Array<number>):N =>
|
||||
};
|
||||
const Label = (inData:Cloud.M, inLayers:N):Cloud.M =>
|
||||
{
|
||||
let stages:N = Forward(inData, inLayers);
|
||||
let stages:N = Forward(M.Create.Padded(inData), inLayers);
|
||||
return stages[stages.length-1];
|
||||
};
|
||||
const Learn = (inData:Cloud.M, inLayers:N, inLabels:Cloud.M, inIterations:number, inRate:number):Cloud.M =>
|
||||
@ -68,7 +66,7 @@ const Learn = (inData:Cloud.M, inLayers:N, inLabels:Cloud.M, inIterations:number
|
||||
let stages:N = [];
|
||||
for(let i=0; i<inIterations; i++)
|
||||
{
|
||||
stages = Forward(inData, inLayers);
|
||||
stages = Forward(M.Create.Padded(inData), inLayers);
|
||||
Backward(stages, inLayers, inLabels, inRate);
|
||||
}
|
||||
return M.Batch.Subtract(stages[stages.length-1], inLabels);
|
||||
|
211
nn_old.js
211
nn_old.js
@ -1,211 +0,0 @@
|
||||
var NN = {};
|
||||
|
||||
NN.TrainingSet = {};
|
||||
NN.TrainingSet.Instances = [];
|
||||
NN.TrainingSet.Create = function()
|
||||
{
|
||||
var obj = {};
|
||||
|
||||
obj.Input = [];
|
||||
obj.Output = [];
|
||||
obj.Order = [];
|
||||
|
||||
NN.TrainingSet.Instances.push(obj);
|
||||
return obj;
|
||||
};
|
||||
NN.TrainingSet.AddPoint = function(inTrainingSet, inType, inData)
|
||||
{
|
||||
inTrainingSet.Input.push(inData);
|
||||
inTrainingSet.Output.push(inType);
|
||||
inTrainingSet.Order.push(inTrainingSet.Order.length);
|
||||
};
|
||||
NN.TrainingSet.AddCloud = function(inTrainingSet, inLabel, inCloud)
|
||||
{
|
||||
var i;
|
||||
for(i=0; i<inCloud.length; i++)
|
||||
{
|
||||
NN.TrainingSet.AddPoint(inTrainingSet, inLabel, inCloud[i]);
|
||||
}
|
||||
};
|
||||
NN.TrainingSet.Randomize = function(inTrainingSet)
|
||||
{
|
||||
var newOrder = [];
|
||||
var selection;
|
||||
while(inTrainingSet.Order.length != 0)
|
||||
{
|
||||
selection = Math.floor(inTrainingSet.Order.length * Math.random());
|
||||
inTrainingSet.Order.splice(selection, 1);
|
||||
newOrder.push(selection);
|
||||
}
|
||||
inTrainingSet.Order = newOrder;
|
||||
};
|
||||
|
||||
|
||||
NN.Layer = {};
|
||||
NN.Layer.Create = function(sizeIn, sizeOut)
|
||||
{
|
||||
var i;
|
||||
var min = [];
|
||||
var max = [];
|
||||
var obj = {};
|
||||
|
||||
sizeIn++;
|
||||
|
||||
obj.Forward = {};
|
||||
for(i=0; i<sizeIn; i++)
|
||||
{
|
||||
min.push(-1);
|
||||
max.push(1);
|
||||
}
|
||||
obj.Forward.Matrix = M.Box([min, max], sizeOut);
|
||||
obj.Forward.StageInput = [];
|
||||
obj.Forward.StageAffine = [];
|
||||
obj.Forward.StageSigmoid = [];
|
||||
obj.Forward.StageDerivative = [];
|
||||
|
||||
obj.Backward = {};
|
||||
obj.Backward.Matrix = M.Transpose(obj.Forward.Matrix);
|
||||
obj.Backward.StageInput = [];
|
||||
obj.Backward.StageDerivative = [];
|
||||
obj.Backward.StageAffine = [];
|
||||
|
||||
return obj;
|
||||
};
|
||||
NN.Layer.Forward = function(inLayer, inInput)
|
||||
{
|
||||
inLayer.Forward.StageInput = M.Pad(inInput); // Pad the input
|
||||
inLayer.Forward.StageAffine = M.Transform(inLayer.Forward.Matrix, inLayer.Forward.StageInput);
|
||||
inLayer.Forward.StageSigmoid = M.Sigmoid(inLayer.Forward.StageAffine);
|
||||
|
||||
return inLayer.Forward.StageSigmoid;
|
||||
};
|
||||
NN.Layer.Error = function(inLayer, inTarget)
|
||||
{
|
||||
return M.Subtract(inLayer.Forward.StageSigmoid, inTarget);
|
||||
};
|
||||
NN.Layer.Backward = function(inLayer, inInput)
|
||||
{
|
||||
/* We need the derivative of the forward pass, but only during the backward pass.
|
||||
That's why-- even though it "belongs" to the forward pass-- it is being calculated here. */
|
||||
inLayer.Forward.StageDerivative = M.Derivative(inLayer.Forward.StageSigmoid);
|
||||
|
||||
/* This transpose matrix is for sending the error back to a previous layer.
|
||||
And again, even though it is derived directly from the forward matrix, it is only needed during the backward pass so we calculate it here.*/
|
||||
inLayer.Backward.Matrix = M.Transpose(inLayer.Forward.Matrix);
|
||||
|
||||
/* When the error vector arrives at a layer, it always needs to be multiplied (read 'supressed') by the derivative of
|
||||
what the layer output earlier during the forward pass.
|
||||
So despite its name, Backward.StageDerivative contains the result of this *multiplication* and not some new derivative calculation.*/
|
||||
inLayer.Backward.StageInput = inInput;
|
||||
inLayer.Backward.StageDerivative = M.Multiply(inLayer.Backward.StageInput, inLayer.Forward.StageDerivative);
|
||||
inLayer.Backward.StageAffine = M.Transform(inLayer.Backward.Matrix, inLayer.Backward.StageDerivative);
|
||||
|
||||
return M.Unpad(inLayer.Backward.StageAffine);// Unpad the output
|
||||
};
|
||||
NN.Layer.Adjust = function(inLayer, inLearningRate)
|
||||
{
|
||||
var deltas;
|
||||
var vector;
|
||||
var scalar;
|
||||
var i, j;
|
||||
|
||||
for(i=0; i<inLayer.Forward.StageInput.length; i++)
|
||||
{
|
||||
deltas = M.Outer(inLayer.Forward.StageInput[i], inLayer.Backward.StageDerivative[i]);
|
||||
deltas = M.Scale(deltas, inLearningRate);
|
||||
|
||||
inLayer.Forward.Matrix = M.Subtract(inLayer.Forward.Matrix, deltas);
|
||||
}
|
||||
};
|
||||
NN.Layer.Stochastic = function(inLayer, inTrainingSet, inIterations)
|
||||
{
|
||||
/* this method is ONLY for testing individual layers, and does not translate to network-level training */
|
||||
var i, j;
|
||||
var current;
|
||||
var error;
|
||||
for(i=0; i<inIterations; i++)
|
||||
{
|
||||
NN.TrainingSet.Randomize(inTrainingSet);
|
||||
for(j=0; j<inTrainingSet.Order.length; j++)
|
||||
{
|
||||
current = inTrainingSet.Order[j];
|
||||
NN.Layer.Forward(inLayer, [inTrainingSet.Input[current]]);
|
||||
error = M.Subtract(inLayer.Forward.StageSigmoid, [inTrainingSet.Output[current]]);
|
||||
NN.Layer.Backward(inLayer, error);
|
||||
NN.Layer.Adjust(inLayer, 0.1);
|
||||
}
|
||||
}
|
||||
};
|
||||
|
||||
NN.Network = {};
|
||||
NN.Network.Instances = [];
|
||||
NN.Network.Create = function()
|
||||
{
|
||||
var obj = {};
|
||||
var i;
|
||||
|
||||
obj.Layers = [];
|
||||
obj.LearningRate = 0.8;
|
||||
obj.Error = [];
|
||||
|
||||
for(i=0; i<arguments.length-1; i++)
|
||||
{
|
||||
obj.Layers.push(NN.Layer.Create(arguments[i], arguments[i+1]));
|
||||
}
|
||||
|
||||
NN.Network.Instances.push(obj);
|
||||
return obj;
|
||||
};
|
||||
NN.Network.Observe = function(inNetwork, inBatch)
|
||||
{
|
||||
var input = M.Clone(inBatch);
|
||||
var i;
|
||||
for(i=0; i<inNetwork.Layers.length; i++)
|
||||
{
|
||||
input = NN.Layer.Forward(inNetwork.Layers[i], input);
|
||||
}
|
||||
return inNetwork.Layers[inNetwork.Layers.length-1].Forward.StageSigmoid;
|
||||
};
|
||||
NN.Network.Error = function(inNetwork, inTraining)
|
||||
{
|
||||
return M.Subtract(inNetwork.Layers[inNetwork.Layers.length-1].Forward.StageSigmoid, inTraining);
|
||||
};
|
||||
NN.Network.Learn = function(inNetwork, inError)
|
||||
{
|
||||
var input = inError;
|
||||
var i;
|
||||
for(i=inNetwork.Layers.length-1; i>=0; i--)
|
||||
{
|
||||
input = NN.Layer.Backward(inNetwork.Layers[i], input);
|
||||
NN.Layer.Adjust(inNetwork.Layers[i], inNetwork.LearningRate);
|
||||
}
|
||||
};
|
||||
|
||||
|
||||
NN.Network.Batch = function(inNetwork, inTrainingSet, inIterations)
|
||||
{
|
||||
var i;
|
||||
for(i=0; i<inIterations; i++)
|
||||
{
|
||||
NN.Network.Observe(inNetwork, inTrainingSet.Input);
|
||||
inNetwork.Error = NN.Network.Error(inNetwork, inTrainingSet.Output)
|
||||
NN.Network.Learn(inNetwork, inNetwork.Error);
|
||||
}
|
||||
};
|
||||
NN.Network.Stochastic = function(inNetwork, inTrainingSet, inIterations)
|
||||
{
|
||||
var i, j;
|
||||
var current;
|
||||
|
||||
for(i=0; i<inIterations; i++)
|
||||
{
|
||||
NN.TrainingSet.Randomize(inTrainingSet);
|
||||
for(j=0; j<inTrainingSet.Order.length; j++)
|
||||
{
|
||||
current = inTrainingSet.Order[j];
|
||||
NN.Network.Observe(inNetwork, [inTrainingSet.Input[current]]);
|
||||
inNetwork.Error = NN.Network.Error(inNetwork, [inTrainingSet.Output[current]]);
|
||||
NN.Network.Learn(inNetwork, inNetwork.Error);
|
||||
}
|
||||
}
|
||||
};
|
Loading…
Reference in New Issue
Block a user