debug work
This commit is contained in:
		
							parent
							
								
									574c670482
								
							
						
					
					
						commit
						bb9e6e75d0
					
				
							
								
								
									
										713
									
								
								index.html
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										713
									
								
								index.html
									
									
									
									
									
										Normal file
									
								
							| @ -0,0 +1,713 @@ | ||||
| <script> | ||||
|     /* Vector Library */ | ||||
| /* | ||||
| 	Works with n-dimensional vectors: represented as arrays of numbers | ||||
| */ | ||||
| var V = {}; | ||||
| V.Subtract = function(inV1, inV2) | ||||
| { | ||||
| 	var out = []; | ||||
| 	for(var i=0; i<inV1.length; i++) | ||||
| 	{ | ||||
| 		out[i] = inV1[i] - inV2[i]; | ||||
| 	} | ||||
| 	return out; | ||||
| }; | ||||
| V.Add = function(inV1, inV2) | ||||
| { | ||||
| 	var out = []; | ||||
| 	for(var i=0; i<inV1.length; i++) | ||||
| 	{ | ||||
| 		out[i] = inV1[i] + inV2[i]; | ||||
| 	} | ||||
| 	return out; | ||||
| }; | ||||
| V.Distance = function(inV1, inV2) | ||||
| { | ||||
| 	return V.Length(V.Subtract(inV1, inV2)) | ||||
| }; | ||||
| V.Dot = function(inV1, inV2) | ||||
| { | ||||
| 	var out = 0; | ||||
| 	for(var i=0; i<inV1.length; i++) | ||||
| 	{ | ||||
| 		out += inV1[i] * inV2[i]; | ||||
| 	} | ||||
| 	return out; | ||||
| }; | ||||
| V.Multiply = function(inV1, inV2) | ||||
| { | ||||
| 	var out = []; | ||||
| 	for(var i=0; i<inV1.length; i++) | ||||
| 	{ | ||||
| 		out[i] = inV1[i] * inV2[i]; | ||||
| 	} | ||||
| 	return out; | ||||
| }; | ||||
| V.Length = function(inV1) | ||||
| { | ||||
| 	return Math.sqrt(V.Dot(inV1, inV1)); | ||||
| }; | ||||
| V.Scale = function(inV1, inScalar) | ||||
| { | ||||
| 	var out = []; | ||||
| 	for(var i=0; i<inV1.length; i++) | ||||
| 	{ | ||||
| 		out[i] = inV1[i] * inScalar; | ||||
| 	} | ||||
| 	return out; | ||||
| }; | ||||
| V.Normalize = function(inV1) | ||||
| { | ||||
|     return V.Scale(inV1, 1/V.Length(inV1)); | ||||
| }; | ||||
| V.Clone = function(inV1) | ||||
| { | ||||
| 	var out = []; | ||||
| 	var i; | ||||
| 	for(i=0; i<inV1.length; i++) | ||||
| 	{ | ||||
| 		out[i] = inV1[i]; | ||||
| 	} | ||||
| 	return out; | ||||
| }; | ||||
| 
 | ||||
| 
 | ||||
| 
 | ||||
| 
 | ||||
| 
 | ||||
| 
 | ||||
| 
 | ||||
| 
 | ||||
| 
 | ||||
| 
 | ||||
| 
 | ||||
| var M = {}; | ||||
| 
 | ||||
| /************************** | ||||
| M A T R I X | ||||
| */ | ||||
| // transform inC with inM | ||||
| // returns the transformed inC | ||||
| M.Transform = function(inM, inC) | ||||
| { | ||||
| 	var outM = []; | ||||
| 	var outV = []; | ||||
| 	var i, j; | ||||
| 	 | ||||
| 	for(i=0; i<inC.length; i++) | ||||
| 	{ | ||||
| 		outV = []; | ||||
| 		for(j=0; j<inM.length; j++) | ||||
| 		{ | ||||
| 			outV[j] = V.Dot(inM[j], inC[i]); | ||||
| 		} | ||||
| 		outM.push(outV); | ||||
| 	} | ||||
| 	return outM; | ||||
| }; | ||||
| 
 | ||||
| 
 | ||||
| // flip rows for columns in inM | ||||
| // returns the modified Matrix | ||||
| M.Transpose = function(inM) | ||||
| { | ||||
| 	var dimensions = inM[0].length; | ||||
| 	var i, j; | ||||
| 	var outM = []; | ||||
| 	var outV = []; | ||||
| 	for(i=0; i<dimensions; i++) | ||||
| 	{ | ||||
| 		outV = []; | ||||
| 		for(j=0; j<inM.length; j++) | ||||
| 		{ | ||||
| 			//the Ith componenth of the Jth member | ||||
| 			outV[j] = inM[j][i]; | ||||
| 		} | ||||
| 		outM.push(outV); | ||||
| 	} | ||||
| 	return outM; | ||||
| } | ||||
| 
 | ||||
| // returns a matrix that is the result of the outer product of inV1 and inV2 | ||||
| // where the Nth member of outM is a copy of V1, scaled by the Nth component of V2 | ||||
| M.Outer = function(inV1, inV2) | ||||
| { | ||||
| 	var outM = []; | ||||
| 	 | ||||
| 	var i; | ||||
| 	for(i=0; i<inV2.length; i++) | ||||
| 	{ | ||||
| 		outM.push(V.Scale(inV1, inV2[i])); | ||||
| 	} | ||||
| 	 | ||||
| 	return outM; | ||||
| }; | ||||
| 
 | ||||
| 
 | ||||
| 
 | ||||
| 
 | ||||
| 
 | ||||
| /************************** | ||||
| B A T C H | ||||
| */ | ||||
| //smash the members of inM with a softmax | ||||
| M.Sigmoid = function(inM) | ||||
| { | ||||
| 	var i, j; | ||||
| 	var outM = []; | ||||
| 	var outV = []; | ||||
| 	for(i=0; i<inM.length; i++) | ||||
| 	{ | ||||
| 		outV = []; | ||||
| 		for(j=0; j<inM[i].length; j++) | ||||
| 		{ | ||||
| 			outV[j] = 1/(1 + Math.pow(Math.E, -inM[i][j])); | ||||
| 		} | ||||
| 		outM.push(outV); | ||||
| 	} | ||||
| 	return outM; | ||||
| }; | ||||
| // return the derivatives of the members of inM (that have been run through the softmax) | ||||
| M.Derivative = function(inM) | ||||
| { | ||||
| 	var i, j; | ||||
| 	var component; | ||||
| 	var outM = []; | ||||
| 	var outV = []; | ||||
| 	for(i=0; i<inM.length; i++) | ||||
| 	{ | ||||
| 		outV = []; | ||||
| 		for(j=0; j<inM[i].length; j++) | ||||
| 		{ | ||||
| 			component = inM[i][j]; | ||||
| 			outV[j] = component*(1 - component); | ||||
| 		} | ||||
| 		outM.push(outV); | ||||
| 	} | ||||
| 	return outM; | ||||
| }; | ||||
| // batch multiply these pairs of vectors | ||||
| M.Multiply = function(inCloud1, inCloud2) | ||||
| { | ||||
| 	var i; | ||||
| 	var outM = []; | ||||
| 	for(i=0; i<inCloud1.length; i++) | ||||
| 	{ | ||||
| 		outM.push(V.Multiply(inCloud1[i], inCloud2[i])); | ||||
| 	}; | ||||
| 	return outM; | ||||
| }; | ||||
| // batch add | ||||
| M.Add = function(inCloud1, inCloud2) | ||||
| { | ||||
|     var outM = []; | ||||
|      | ||||
|     var i; | ||||
|     for(i=0; i<inCloud1.length; i++) | ||||
|     { | ||||
|         outM.push(V.Add(inCloud1[i], inCloud2[i])); | ||||
|     } | ||||
|     return outM; | ||||
| }; | ||||
| M.Subtract = function(inCloud1, inCloud2) | ||||
| { | ||||
|     var outM = []; | ||||
|      | ||||
|     var i; | ||||
|     for(i=0; i<inCloud1.length; i++) | ||||
|     { | ||||
|         outM.push(V.Subtract(inCloud1[i], inCloud2[i])); | ||||
|     } | ||||
|     return outM; | ||||
| }; | ||||
| M.Scale = function(inCloud1, inScalar) | ||||
| { | ||||
|     var outM = []; | ||||
|      | ||||
|     var i; | ||||
|     for(i=0; i<inCloud1.length; i++) | ||||
|     { | ||||
|         outM.push(V.Scale(inCloud1[i], inScalar)); | ||||
|     } | ||||
|     return outM; | ||||
| }; | ||||
| M.Clone = function(inM) | ||||
| { | ||||
|     var i; | ||||
|     var outM; | ||||
|     var outV; | ||||
|      | ||||
|     outM =[]; | ||||
|     for(i=0; i<inM.length; i++) | ||||
|     { | ||||
|         outM.push(V.Clone(inM[i])); | ||||
|     } | ||||
|     return outM; | ||||
| }; | ||||
| 
 | ||||
| 
 | ||||
| /************************** | ||||
| B O U N D S | ||||
| */ | ||||
| // return the bounding box of inM as a two-member Matrix | ||||
| M.Bounds = function(inM) | ||||
| { | ||||
| 	var dimensions = inM[0].length; | ||||
| 	var i, j; | ||||
| 	var min = []; | ||||
| 	var max = []; | ||||
| 	for(i=0; i<dimensions; i++) | ||||
| 	{ | ||||
| 		min[i] = 9999999; | ||||
| 		max[i] = -999999; | ||||
| 	} | ||||
| 	for(i=0; i<inM.length; i++) | ||||
| 	{ | ||||
| 		for(j=0; j<dimensions; j++) | ||||
| 		{ | ||||
| 			if(inM[i][j] < min[j]) | ||||
| 			{ | ||||
| 				min[j] = inM[i][j]; | ||||
| 			} | ||||
| 			if(inM[i][j] > max[j]) | ||||
| 			{ | ||||
| 				max[j] = inM[i][j]; | ||||
| 			}			 | ||||
| 		} | ||||
| 	} | ||||
| 	return [min, max]; | ||||
| }; | ||||
| 
 | ||||
| // find the local coordinates for all the members of inM, within the bounding box inB | ||||
| // returns a new Matrix of relative vectors | ||||
| M.GlobalToLocal = function(inM, inB) | ||||
| { | ||||
| 	var dimensions = inB[0].length; | ||||
| 	var i, j; | ||||
| 	var outM = []; | ||||
| 	var outV = []; | ||||
| 	var size; | ||||
| 	var min; | ||||
| 	var denominator; | ||||
| 	for(i=0; i<inM.length; i++) | ||||
| 	{ | ||||
| 		outV = []; | ||||
| 		for(j=0; j<dimensions; j++) | ||||
| 		{ | ||||
| 			denominator = inB[1][j] - inB[0][j]; | ||||
| 			if(denominator == 0) | ||||
| 			{ | ||||
| 				outV[j] = inB[1][j];// if min and max are the same, just output max | ||||
| 			} | ||||
| 			else | ||||
| 			{ | ||||
| 				outV[j] = (inM[i][j] - inB[0][j])/denominator;	 | ||||
| 			} | ||||
| 		} | ||||
| 		outM.push(outV); | ||||
| 	} | ||||
| 	return outM; | ||||
| }; | ||||
| // find the global coordinates for all the members of inM, within the bounding box inB | ||||
| // returns a new Matrix of global vectors | ||||
| M.LocalToGlobal = function(inM, inB) | ||||
| { | ||||
| 	var dimensions = inB[0].length; | ||||
| 	var i, j; | ||||
| 	var outM = []; | ||||
| 	var outV = []; | ||||
| 	var size; | ||||
| 	var min; | ||||
| 	for(i=0; i<inM.length; i++) | ||||
| 	{ | ||||
| 		outV = []; | ||||
| 		for(j=0; j<dimensions; j++) | ||||
| 		{ | ||||
| 			outV[j] = inB[0][j] + inM[i][j] * (inB[1][j] - inB[0][j]); | ||||
| 		} | ||||
| 		outM.push(outV); | ||||
| 	} | ||||
| 	return outM; | ||||
| }; | ||||
| 
 | ||||
| 
 | ||||
| /************************** | ||||
| C L O U D | ||||
| */ | ||||
| // return some number of points from inM as a new Matrix | ||||
| M.Reduce = function(inM, inCount) | ||||
| { | ||||
| 	var largeGroupSize; | ||||
| 	var largeGroupCount; | ||||
| 	var smallGroupSize; | ||||
| 	var outM = []; | ||||
| 	 | ||||
| 	largeGroupSize = Math.floor(inM.length/inM); | ||||
| 	smallGroupSize = inM.length%inCount | ||||
| 	for(i=0; i<inM-1; i++) | ||||
| 	{ | ||||
| 		index = i*largeGroupSize + Math.floor(Math.random()*largeGroupSize); | ||||
| 		outM.push( V.Clone(inM[index]) ); | ||||
| 	} | ||||
| 	if(smallGroupSize != 0) | ||||
| 	{ | ||||
| 		index = i*largeGroupSize + Math.floor(Math.random()*smallGroupSize) | ||||
| 		outM.push( V.Clone(inM[index]) ); | ||||
| 	} | ||||
| 	return outM; | ||||
| }; | ||||
| 
 | ||||
| // return a Matrix of length inCount, where all the members fall within the circle paramemters, including a bias | ||||
| M.Circle = function(inCenter, inRadius, inBias, inCount) | ||||
| { | ||||
| 	var i, j; | ||||
| 	var vector; | ||||
| 	var length; | ||||
| 	var outM = []; | ||||
| 	 | ||||
| 	for(i=0; i<inCount; i++) | ||||
| 	{ | ||||
| 		//generate a random vector | ||||
| 		vector = []; | ||||
| 		for(j=0; j<inCenter.length; j++) | ||||
| 		{ | ||||
| 			vector[j] = (Math.random() - 0.5); | ||||
| 		} | ||||
| 		 | ||||
| 		//normalize the vector | ||||
| 		vector = V.Scale(vector, 1/V.Length(vector)); | ||||
| 		 | ||||
| 		//set a random length (with a bias) | ||||
| 		length = Math.pow(Math.random(), Math.log(inBias)/Math.log(0.5))*inRadius; | ||||
| 		vector = V.Scale(vector, length); | ||||
| 		 | ||||
| 		//move the vector to the center | ||||
| 		vector = V.Add(vector, inCenter); | ||||
| 		 | ||||
| 		outM.push(vector); | ||||
| 	} | ||||
| 	return outM; | ||||
| }; | ||||
| 
 | ||||
| // return a Matrix of length inCount, where all the members fall within inBounds | ||||
| M.Box = function(inBounds, inCount) | ||||
| { | ||||
| 	var vector; | ||||
| 	var dimensions = inBounds[0].length; | ||||
| 	var i, j; | ||||
| 	var min, max; | ||||
| 	var outM = []; | ||||
| 	 | ||||
| 	for(i=0; i<inCount; i++) | ||||
| 	{ | ||||
| 		vector = []; | ||||
| 		for(j=0; j<dimensions; j++) | ||||
| 		{ | ||||
| 			min = inBounds[0][j]; | ||||
| 			max = inBounds[1][j]; | ||||
| 			 | ||||
| 			vector[j] = min + Math.random()*(max - min); | ||||
| 		} | ||||
| 		outM.push(vector); | ||||
| 	} | ||||
| 	return outM; | ||||
| }; | ||||
| 
 | ||||
| //combine all the matricies in inList into one long Matrix | ||||
| M.Combine = function(inList) | ||||
| { | ||||
| 	var i, j; | ||||
| 	var outM = []; | ||||
| 	for(i=0; i<inList.length; i++) | ||||
| 	{ | ||||
| 		for(j=0; j<inList[i].length; j++) | ||||
| 		{ | ||||
| 			outM.push(V.Clone(inList[i][j])); | ||||
| 		} | ||||
| 	} | ||||
| 	return outM; | ||||
| }; | ||||
| 
 | ||||
| /* | ||||
| PLEASE NOTE: These padding routines are unique to this library in that they | ||||
| actually modify the input object(s) rather than returning modified copies! | ||||
| */ | ||||
| // add a new component (set to '1') to each member of inM | ||||
| M.Pad = function(inM) | ||||
| { | ||||
| 	var i; | ||||
| 	for(i=0; i<inM.length; i++) | ||||
| 	{ | ||||
| 		inM[i].push(1); | ||||
| 	} | ||||
|     	return inM; | ||||
| }; | ||||
| // remove the last component of each memeber of inM | ||||
| M.Unpad = function(inM) | ||||
| { | ||||
| 	var i; | ||||
|     	for(i=0; i<inM.length; i++) | ||||
| 	{ | ||||
|         	inM[i].pop(); | ||||
| 	} | ||||
| 	return inM; | ||||
| }; | ||||
| // set the last component of each member of inM to 1 | ||||
| M.Repad = function(inM) | ||||
| { | ||||
| 	var i; | ||||
| 	var last = inM[0].length-1; | ||||
|     	for(i=0; i<inM.length; i++) | ||||
| 	{ | ||||
|         	inM[i][last] = 1; | ||||
| 	} | ||||
| 	return inM; | ||||
| }; | ||||
| </script> | ||||
| 
 | ||||
| <script> | ||||
| var NN = {}; | ||||
| 
 | ||||
| NN.TrainingSet = {}; | ||||
| NN.TrainingSet.Instances = []; | ||||
| NN.TrainingSet.Create = function() | ||||
| { | ||||
|     var obj = {}; | ||||
| 
 | ||||
|     obj.Input = []; | ||||
|     obj.Output = []; | ||||
|     obj.Order = []; | ||||
|      | ||||
|     NN.TrainingSet.Instances.push(obj); | ||||
|     return obj; | ||||
| }; | ||||
| NN.TrainingSet.AddPoint = function(inTrainingSet, inType, inData) | ||||
| { | ||||
|     inTrainingSet.Input.push(inData); | ||||
|     inTrainingSet.Output.push(inType); | ||||
|     inTrainingSet.Order.push(inTrainingSet.Order.length); | ||||
| }; | ||||
| NN.TrainingSet.AddCloud = function(inTrainingSet, inLabel, inCloud) | ||||
| { | ||||
|     var i; | ||||
|     for(i=0; i<inCloud.length; i++) | ||||
|     { | ||||
|         NN.TrainingSet.AddPoint(inTrainingSet, inLabel, inCloud[i]); | ||||
|     } | ||||
| }; | ||||
| NN.TrainingSet.Randomize = function(inTrainingSet) | ||||
| { | ||||
|       var newOrder = []; | ||||
|       var selection; | ||||
|       while(inTrainingSet.Order.length != 0) | ||||
|       { | ||||
|           selection = Math.floor(inTrainingSet.Order.length * Math.random()); | ||||
|           inTrainingSet.Order.splice(selection, 1); | ||||
|           newOrder.push(selection); | ||||
|       } | ||||
|       inTrainingSet.Order = newOrder; | ||||
| }; | ||||
| 
 | ||||
| 
 | ||||
| NN.Layer = {}; | ||||
| NN.Layer.Create = function(sizeIn, sizeOut) | ||||
| { | ||||
|     var i; | ||||
|     var min = []; | ||||
|     var max = []; | ||||
|     var obj = {}; | ||||
|      | ||||
|     sizeIn++; | ||||
|      | ||||
|     obj.Forward = {}; | ||||
|     for(i=0; i<sizeIn; i++) | ||||
|     { | ||||
|         min.push(-1); | ||||
|         max.push(1); | ||||
|     } | ||||
|     obj.Forward.Matrix = M.Box([min, max], sizeOut); | ||||
|     obj.Forward.StageInput = []; | ||||
|     obj.Forward.StageAffine = []; | ||||
|     obj.Forward.StageSigmoid = []; | ||||
|     obj.Forward.StageDerivative = []; | ||||
|      | ||||
|     obj.Backward = {}; | ||||
|     obj.Backward.Matrix = M.Transpose(obj.Forward.Matrix); | ||||
|     obj.Backward.StageInput = []; | ||||
|     obj.Backward.StageDerivative = []; | ||||
|     obj.Backward.StageAffine = []; | ||||
|      | ||||
|     return obj; | ||||
| }; | ||||
| NN.Layer.Forward = function(inLayer, inInput) | ||||
| { | ||||
|     inLayer.Forward.StageInput = M.Pad(inInput); // Pad the input | ||||
|     inLayer.Forward.StageAffine = M.Transform(inLayer.Forward.Matrix, inLayer.Forward.StageInput); | ||||
|     inLayer.Forward.StageSigmoid = M.Sigmoid(inLayer.Forward.StageAffine); | ||||
|      | ||||
|     return inLayer.Forward.StageSigmoid; | ||||
| }; | ||||
| NN.Layer.Error = function(inLayer, inTarget) | ||||
| { | ||||
|     return M.Subtract(inLayer.Forward.StageSigmoid, inTarget); | ||||
| }; | ||||
| NN.Layer.Backward = function(inLayer, inInput) | ||||
| { | ||||
|     /* We need the derivative of the forward pass, but only during the backward pass. | ||||
|     That's why-- even though it "belongs" to the forward pass-- it is being calculated here. */ | ||||
|     inLayer.Forward.StageDerivative = M.Derivative(inLayer.Forward.StageSigmoid); | ||||
|      | ||||
|     /* This transpose matrix is for sending the error back to a previous layer. | ||||
|     And again, even though it is derived directly from the forward matrix, it is only needed during the backward pass so we calculate it here.*/ | ||||
|     inLayer.Backward.Matrix = M.Transpose(inLayer.Forward.Matrix); | ||||
|      | ||||
|     /* When the error vector arrives at a layer, it always needs to be multiplied (read 'supressed') by the derivative of | ||||
|     what the layer output earlier during the forward pass. | ||||
|     So despite its name, Backward.StageDerivative contains the result of this *multiplication* and not some new derivative calculation.*/ | ||||
|     inLayer.Backward.StageInput = inInput; | ||||
|     inLayer.Backward.StageDerivative = M.Multiply(inLayer.Backward.StageInput, inLayer.Forward.StageDerivative); | ||||
|     inLayer.Backward.StageAffine = M.Transform(inLayer.Backward.Matrix, inLayer.Backward.StageDerivative); | ||||
|      | ||||
|     return M.Unpad(inLayer.Backward.StageAffine);// Unpad the output | ||||
| }; | ||||
| NN.Layer.Adjust = function(inLayer, inLearningRate) | ||||
| { | ||||
|     var deltas; | ||||
|     var vector; | ||||
|     var scalar; | ||||
|     var i, j; | ||||
|      | ||||
|     for(i=0; i<inLayer.Forward.StageInput.length; i++) | ||||
|     { | ||||
|         deltas = M.Outer(inLayer.Forward.StageInput[i], inLayer.Backward.StageDerivative[i]); | ||||
|         deltas = M.Scale(deltas, inLearningRate); | ||||
|          | ||||
|         inLayer.Forward.Matrix = M.Subtract(inLayer.Forward.Matrix, deltas); | ||||
|     } | ||||
| }; | ||||
| NN.Layer.Stochastic = function(inLayer, inTrainingSet, inIterations) | ||||
| { | ||||
|     /* this method is ONLY for testing individual layers, and does not translate to network-level training */ | ||||
|     var i, j; | ||||
|     var current; | ||||
|     var error; | ||||
|     for(i=0; i<inIterations; i++) | ||||
|     { | ||||
|         NN.TrainingSet.Randomize(inTrainingSet); | ||||
|         for(j=0; j<inTrainingSet.Order.length; j++) | ||||
|         { | ||||
|             current = inTrainingSet.Order[j]; | ||||
|             NN.Layer.Forward(inLayer, [inTrainingSet.Input[current]]); | ||||
|             error = M.Subtract(inLayer.Forward.StageSigmoid, [inTrainingSet.Output[current]]); | ||||
|             NN.Layer.Backward(inLayer, error); | ||||
|             NN.Layer.Adjust(inLayer, 0.1); | ||||
|         } | ||||
|     } | ||||
| }; | ||||
| 
 | ||||
| NN.Network = {}; | ||||
| NN.Network.Instances = []; | ||||
| NN.Network.Create = function() | ||||
| { | ||||
|     var obj = {}; | ||||
|     var i;     | ||||
|      | ||||
|     obj.Layers = []; | ||||
|     obj.LearningRate = 0.8; | ||||
|     obj.Error = []; | ||||
|      | ||||
|     for(i=0; i<arguments.length-1; i++) | ||||
|     { | ||||
|         obj.Layers.push(NN.Layer.Create(arguments[i], arguments[i+1])); | ||||
|     } | ||||
|      | ||||
|     NN.Network.Instances.push(obj); | ||||
|     return obj; | ||||
| }; | ||||
| NN.Network.Observe = function(inNetwork, inBatch) | ||||
| { | ||||
|       var input = M.Clone(inBatch); | ||||
|       var i; | ||||
|       for(i=0; i<inNetwork.Layers.length; i++) | ||||
|       { | ||||
|           input = NN.Layer.Forward(inNetwork.Layers[i], input); | ||||
|       } | ||||
|       return inNetwork.Layers[inNetwork.Layers.length-1].Forward.StageSigmoid; | ||||
| }; | ||||
| NN.Network.Error = function(inNetwork, inTraining) | ||||
| { | ||||
|       return M.Subtract(inNetwork.Layers[inNetwork.Layers.length-1].Forward.StageSigmoid, inTraining); | ||||
| }; | ||||
| NN.Network.Learn = function(inNetwork, inError) | ||||
| { | ||||
|       var input = inError; | ||||
|       var i; | ||||
|       for(i=inNetwork.Layers.length-1; i>=0; i--) | ||||
|       { | ||||
|           input = NN.Layer.Backward(inNetwork.Layers[i], input); | ||||
|           NN.Layer.Adjust(inNetwork.Layers[i], inNetwork.LearningRate); | ||||
|       } | ||||
| }; | ||||
| 
 | ||||
| 
 | ||||
| NN.Network.Batch = function(inNetwork, inTrainingSet, inIterations) | ||||
| { | ||||
|     var i; | ||||
|     for(i=0; i<inIterations; i++) | ||||
|     { | ||||
|         NN.Network.Observe(inNetwork, inTrainingSet.Input); | ||||
|         inNetwork.Error = NN.Network.Error(inNetwork, inTrainingSet.Output) | ||||
|         NN.Network.Learn(inNetwork, inNetwork.Error); | ||||
|     } | ||||
| }; | ||||
| NN.Network.Stochastic = function(inNetwork, inTrainingSet, inIterations) | ||||
| { | ||||
|     var i, j; | ||||
|     var current; | ||||
|      | ||||
|     for(i=0; i<inIterations; i++) | ||||
|     { | ||||
|         NN.TrainingSet.Randomize(inTrainingSet); | ||||
|         for(j=0; j<inTrainingSet.Order.length; j++) | ||||
|         { | ||||
|             current = inTrainingSet.Order[j]; | ||||
|             NN.Network.Observe(inNetwork, [inTrainingSet.Input[current]]); | ||||
|             inNetwork.Error = NN.Network.Error(inNetwork, [inTrainingSet.Output[current]]); | ||||
|             NN.Network.Learn(inNetwork, inNetwork.Error); | ||||
|         } | ||||
|     } | ||||
| }; | ||||
| </script> | ||||
| 
 | ||||
| <script> | ||||
|     let matrix1 = [ | ||||
|     [-0.43662948305036675, -0.368590640707799, -0.23227179558890843], | ||||
|     [-0.004292653969505622, 0.38670055222186317, -0.2478421495365568], | ||||
|     [0.738181366836224, 0.3389203747353555, 0.4920200816404332] | ||||
|     ]; | ||||
| 
 | ||||
|     let matrix2 = [ | ||||
|     [0.5793881115472015, 0.9732593374796092, 0.15207639877016987, -0.5356575655337803] | ||||
|     ]; | ||||
| 
 | ||||
|     let typeA = [ | ||||
|         [ 0.1,  0.05], | ||||
|         [ 0.0, -0.06] | ||||
|     ]; | ||||
|     let typeB = [ | ||||
|         [ 0.99, 0.85], | ||||
|         [ 1.2,  1.05] | ||||
|     ]; | ||||
| 
 | ||||
|     var layer1 = NN.Layer.Create(1, 1); | ||||
|     layer1.Forward.Matrix = matrix1; | ||||
| 
 | ||||
|     var layer2 = NN.Layer.Create(1, 1); | ||||
|     layer2.Forward.Matrix = matrix2; | ||||
| 
 | ||||
|     let stage1 = NN.Layer.Forward(layer1, typeA); | ||||
| 
 | ||||
|     console.log(stage1); | ||||
| 
 | ||||
| </script> | ||||
| @ -98,6 +98,7 @@ Deno.test("Single.Affine", ()=> | ||||
|     assertEquals(t.length, 2, "correct dimensions"); | ||||
|     assertEquals(t[0], 0.5) | ||||
|     assertEquals(t[1], 1.1, "correct placement"); | ||||
|     console.log(t); | ||||
| }); | ||||
| Deno.test("Single.Subtract", ()=> | ||||
| { | ||||
|  | ||||
							
								
								
									
										9
									
								
								m.ts
									
									
									
									
									
								
							
							
						
						
									
										9
									
								
								m.ts
									
									
									
									
									
								
							| @ -38,11 +38,18 @@ const Methods = { | ||||
|           Pad: (inCloud:Cloud.M):Cloud.M=> {inCloud.forEach((row:Cloud.V)=> row.push(1)); return inCloud; }, | ||||
|         Unpad: (inCloud:Cloud.M):Cloud.M=> {inCloud.forEach((row:Cloud.V)=> row.pop());   return inCloud; } | ||||
|     }, | ||||
|     Test: | ||||
|     { | ||||
|         Dot:(v1:Cloud.V, v2:Cloud.V):number=>  | ||||
|         { | ||||
|             return v1.reduce((sum, current, index)=> sum + current*v2[index]); | ||||
|         } | ||||
|     }, | ||||
|     Single: | ||||
|     { | ||||
|         Subtract:    (inV1:Cloud.V, inV2:Cloud.V):Cloud.V=> inV1.map((component, i)=> component-inV2[i]), | ||||
|         Multiply:    (inV1:Cloud.V, inV2:Cloud.V):Cloud.V=> inV1.map((component, i)=> component*inV2[i]), | ||||
|           Affine: (inV:Cloud.V, inMatrix:Cloud.M):Cloud.V=> inMatrix.map((row:Cloud.V)=> row.reduce((sum, current, index)=> sum + current*inV[index])) | ||||
|           Affine: (inV:Cloud.V, inMatrix:Cloud.M):Cloud.V=> inMatrix.map((row:Cloud.V)=> row.reduce((sum, current, index)=> sum + current*inV[index], 0)) | ||||
|     }, | ||||
|     Batch: | ||||
|     { | ||||
|  | ||||
							
								
								
									
										57
									
								
								nn.test.js
									
									
									
									
									
								
							
							
						
						
									
										57
									
								
								nn.test.js
									
									
									
									
									
								
							| @ -1,25 +1,57 @@ | ||||
| import { assert, assertEquals } from "https://deno.land/std@0.102.0/testing/asserts.ts"; | ||||
| import { Label, Forward, Backward } from "./nn.ts"; | ||||
| import { default as M } from "./m.ts"; | ||||
| import { default as Methods } from "./m.ts"; | ||||
| 
 | ||||
| let training = []; | ||||
| let stages = []; | ||||
| let layers = []; | ||||
| 
 | ||||
| Deno.test("NN.Label", ()=> | ||||
| let typeA = [ | ||||
|     [ 0.1,  0.05], | ||||
|     [ 0.0, -0.06] | ||||
| ]; | ||||
| let typeB = [ | ||||
|     [ 0.99, 0.85], | ||||
|     [ 1.2,  1.05] | ||||
| ]; | ||||
| 
 | ||||
| 
 | ||||
| Deno.test("check.forward", ()=> | ||||
| { | ||||
|     Label(training, | ||||
|     [ | ||||
|     let training = []; | ||||
|     let stages = []; | ||||
|     let layers = [ | ||||
|         [ | ||||
|             [-0.43662948305036675, -0.368590640707799, -0.23227179558890843], | ||||
|             [-0.004292653969505622, 0.38670055222186317, -0.2478421495365568], | ||||
|             [0.738181366836224, 0.3389203747353555, 0.4920200816404332] | ||||
|         ], | ||||
|         [ | ||||
|             [0.5793881115472015, 0.9732593374796092, 0.15207639877016987, -0.5356575655337803] | ||||
|         ] | ||||
|     ]; | ||||
| 
 | ||||
|     let typeA = [ | ||||
|         [ 0.1,  0.05], | ||||
|         [ 0.0, -0.06] | ||||
|     ], | ||||
|     [1]); | ||||
|     Label(training, | ||||
|     [ | ||||
|     ]; | ||||
|     let typeB = [ | ||||
|         [ 0.99, 0.85], | ||||
|         [ 1.2,  1.05] | ||||
|     ], | ||||
|     [0]); | ||||
|     ]; | ||||
| 
 | ||||
|     Label(training, typeA, [1]); | ||||
|     stages.push(training[0]); | ||||
|     Forward(stages, layers); | ||||
|     console.log(stages); | ||||
| }); | ||||
| 
 | ||||
| /* | ||||
| Deno.test("NN.Label", ()=> | ||||
| { | ||||
|     Label(training, typeA, [1]); | ||||
|     Label(training, typeB, [0]); | ||||
|     stages.push(training[0]); | ||||
|     console.log(training); | ||||
|     assertEquals(training.length, 2, "input and output sets created"); | ||||
| @ -30,12 +62,10 @@ Deno.test("NN.Label", ()=> | ||||
| 
 | ||||
| Deno.test("NN.Backward", ()=> | ||||
| { | ||||
| 
 | ||||
|     let layer1 = M.Create.Box([0, 0, 0], [1, 1, 1], 2); | ||||
|     let layer2 = M.Create.Box([0, 0, 0], [1, 1, 1], 1); | ||||
|     let layer1 = M.Create.Box([-1, -1, -1], [1, 1, 1], 2); | ||||
|     let layer2 = M.Create.Box([-1, -1, -1], [1, 1, 1], 1); | ||||
|     let copy1 = M.Create.Clone(layer1); | ||||
|     let copy2 = M.Create.Clone(layer2); | ||||
| 
 | ||||
|     layers.push(layer1); | ||||
|     layers.push(layer2); | ||||
| 
 | ||||
| @ -56,3 +86,4 @@ Deno.test("NN.Forward", ()=> | ||||
| }); | ||||
| 
 | ||||
| 
 | ||||
| */ | ||||
		Loading…
	
		Reference in New Issue
	
	Block a user