setup
This commit is contained in:
		
						commit
						642e4203a0
					
				
							
								
								
									
										49
									
								
								m.js
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										49
									
								
								m.js
									
									
									
									
									
										Normal file
									
								
							| @ -0,0 +1,49 @@ | ||||
| const M = | ||||
| { | ||||
|     Iterate: | ||||
|     { | ||||
|         New(inDimensions, inCount, inFunction) | ||||
|         { | ||||
|             let row, i, outputCloud, outputVector; | ||||
|             outputCloud = []; | ||||
|             for(row=0; row<inCount; row++) | ||||
|             { | ||||
|                 outputVector = []; | ||||
|                 for(i=0; i<inDimensions; i++) | ||||
|                 { | ||||
|                     outputVector.push(inFunction(i, row, outputVector)); | ||||
|                 } | ||||
|                 outputCloud.push(outputVector); | ||||
|             } | ||||
|             return outputCloud; | ||||
|         }, | ||||
|         Old(inCloud, inFunction) | ||||
|         { | ||||
|             return M.Iterate.New(inCloud[0].length, inCloud.length, inFunction); | ||||
|         } | ||||
|     }, | ||||
|     Create: | ||||
|     { | ||||
|               Box: (inV1, inV2, inCount)=> M.Iterate.New(inV1.length,    inCount,           (i, row)=> inV1[i]+(inV2[i]-inV1[i])*Math.random()), | ||||
|         Transpose:             (inCloud)=> M.Iterate.New(inCloud.length, inCloud[0].length, (i, row)=> inCloud[i][row]), | ||||
|             Outer:          (inV1, inV2)=> M.Iterate.New(inV1.length,    inV2.length,       (i, row)=> inV1[i]*inV2[row]), | ||||
|             Clone:             (inCloud)=> M.Iterate.Old(inCloud,                           (i, row)=> inCloud[row][i]) | ||||
|     }, | ||||
|     Mutate: | ||||
|     { | ||||
|           Pad: inCloud=> inCloud.forEach(row=> row.push(1)), | ||||
|         Unpad: inCloud=> inCloud.forEach(row=> row.pop()) | ||||
|     }, | ||||
|     Single: | ||||
|     { | ||||
|         Affine: (inV, inMatrix)=> inMatrix.map(row=> row.reduce((sum, current, index)=> sum + current*inV[index])) | ||||
|     }, | ||||
|     Batch: | ||||
|     { | ||||
|             Affine: (inCloud, inMatrix)=> inCloud.map(row=> M.Single.Affine(row, inMatrix)), | ||||
|            Sigmoid:           (inCloud)=> M.Iterate.Old(inCloud, i=>1/(1+Math.Pow(Math.E, i))), | ||||
|         Derivative:           (inCloud)=> M.Iterate.Old(inCloud, i=>i*(1-i)) | ||||
|     } | ||||
| } | ||||
| 
 | ||||
| export default M; | ||||
							
								
								
									
										107
									
								
								m.test.js
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										107
									
								
								m.test.js
									
									
									
									
									
										Normal file
									
								
							| @ -0,0 +1,107 @@ | ||||
| import { assert, assertEquals } from "https://deno.land/std@0.102.0/testing/asserts.ts"; | ||||
| import { default as M } from "./m.js"; | ||||
| 
 | ||||
| Deno.test("Iterate.New", ()=> | ||||
| { | ||||
|     let dimensions = 3; | ||||
|     let count = 4; | ||||
|     let cloud = M.Iterate.New(dimensions, count, (i, j)=>i+j); | ||||
|     assertEquals(cloud.length, count, "correct count"); | ||||
|     assertEquals(cloud[0].length, dimensions, "correct dimensions"); | ||||
|     assertEquals(cloud[0][0], 0); | ||||
|     assertEquals(cloud[3][2], 5, "correct output"); | ||||
| }); | ||||
| 
 | ||||
| Deno.test("Create.Box", ()=> | ||||
| { | ||||
|     let min = [-1, -2, -3]; | ||||
|     let max = [1, 2, 3]; | ||||
|     let count = 10; | ||||
| 
 | ||||
|     let box = M.Create.Box(min, max, count); | ||||
|     assertEquals(box.length, count, "correct count"); | ||||
|     for(let i=0; i<box.length; i++) | ||||
|     { | ||||
|         assertEquals(box[i].length, min.length, "correct dimensions"); | ||||
|         for(let j=0; j<box[i].length; j++) | ||||
|         { | ||||
|             assert(box[i][j] >= min[j], true); | ||||
|             assert(box[i][j] <= max[j], true, "correct range"); | ||||
|         } | ||||
|     } | ||||
| }); | ||||
| 
 | ||||
| Deno.test("Create.Transpose", ()=> | ||||
| { | ||||
|     let v1 = [1, 2, 3]; | ||||
|     let v2 = [4, 5, 6]; | ||||
|     let tpose = M.Create.Transpose([v1, v2]); | ||||
|     assertEquals(tpose.length, 3, "correct count"); | ||||
|     assertEquals(tpose[0].length, 2, "correct dimensions"); | ||||
|     assertEquals(tpose[0][0], v1[0]); | ||||
|     assertEquals(tpose[0][1], v2[0], "correct placement"); | ||||
| }); | ||||
| 
 | ||||
| Deno.test("Create.Outer", ()=> | ||||
| { | ||||
|     let v1 = [1, 2, 3]; | ||||
|     let v2 = [4, 5]; | ||||
|     let outer = M.Create.Outer(v1, v2); | ||||
|     assertEquals(outer.length, v2.length, "correct count"); | ||||
|     assertEquals(outer[0].length, v1.length, "correct dimensions"); | ||||
|     assertEquals(outer[1][0], v1[0]*v2[1], "correct placement") | ||||
| }); | ||||
| 
 | ||||
| Deno.test("Create.Clone", ()=> | ||||
| { | ||||
|     let v1 = [1, 2, 3]; | ||||
|     let v2 = [4, 5, 6]; | ||||
|     let clone = M.Create.Clone([v1, v2]); | ||||
|     assertEquals(clone.length, 2, "correct count"); | ||||
|     assertEquals(clone[0].length, v1.length, "correct dimensions"); | ||||
|     assertEquals(clone[1][0], v2[0], "correct placement"); | ||||
| }); | ||||
| 
 | ||||
| Deno.test("Mutate.Pad", ()=> | ||||
| { | ||||
|     let matrix = [ | ||||
|         [1, 2, 3], | ||||
|         [4, 5, 6] | ||||
|     ]; | ||||
|     M.Mutate.Pad(matrix); | ||||
|     assertEquals(matrix.length, 2, "correct count"); | ||||
|     assertEquals(matrix[0].length, 4, "correct dimensions"); | ||||
|     assertEquals(matrix[0][3], 1, "correct placement"); | ||||
| }); | ||||
| 
 | ||||
| Deno.test("Mutate.Unpad", ()=> | ||||
| { | ||||
|     let matrix = [ | ||||
|         [1, 2, 3, 1], | ||||
|         [4, 5, 6, 1] | ||||
|     ]; | ||||
|     M.Mutate.Unpad(matrix); | ||||
|     assertEquals(matrix.length, 2, "correct count"); | ||||
|     assertEquals(matrix[0].length, 3, "correct dimensions"); | ||||
|     assertEquals(matrix[1][0], 4, "correct placement"); | ||||
| }); | ||||
| 
 | ||||
| Deno.test("Single.Affine", ()=> | ||||
| { | ||||
|     let v = [1, 2]; | ||||
|     let m = [[0.1, 0.2], [0.3, 0.4]]; | ||||
|     let t = M.Single.Affine(v, m); | ||||
|     assertEquals(t.length, 2, "correct dimensions"); | ||||
|     assertEquals(t[0], 0.5) | ||||
|     assertEquals(t[1], 1.1, "correct placement"); | ||||
| }); | ||||
| 
 | ||||
| Deno.test("Batch.Affine", ()=> | ||||
| { | ||||
|     let c = [[1, 2], [3, 4]]; | ||||
|     let m = [[0.1, 0.2], [0.3, 0.4]]; | ||||
|     let t = M.Batch.Affine(c, m); | ||||
|     assertEquals(t.length, 2, "correct count"); | ||||
|     assertEquals(t[0].length, 2, "correct dimensions") | ||||
|     assertEquals(t[0][1], 1.1, "correct placement"); | ||||
| }); | ||||
							
								
								
									
										17
									
								
								methods.md
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										17
									
								
								methods.md
									
									
									
									
									
										Normal file
									
								
							| @ -0,0 +1,17 @@ | ||||
| box(boundingBox, count) // done | ||||
| transpose(inMatrix) // done | ||||
| outer(inv1, inv2) // done | ||||
| clone(inCloud) // done | ||||
| 
 | ||||
| pad(inCloud) // done | ||||
| unpad(inCloud) // done | ||||
| 
 | ||||
| // batch filter | ||||
| transform(inCloud, inMatrix) // done | ||||
| sigmoid(inCloud) // 1/(1+e^x) // | ||||
| derivative(inCloud) // x*(1-x) | ||||
| scale(inCloud1, inV) | ||||
| 
 | ||||
| // batch of pairs | ||||
| subtract(inCloud1, inCloud2) | ||||
| multiply(inCloud1, inCloud2)  | ||||
							
								
								
									
										211
									
								
								nn.js
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										211
									
								
								nn.js
									
									
									
									
									
										Normal file
									
								
							| @ -0,0 +1,211 @@ | ||||
| var NN = {}; | ||||
| 
 | ||||
| NN.TrainingSet = {}; | ||||
| NN.TrainingSet.Instances = []; | ||||
| NN.TrainingSet.Create = function() | ||||
| { | ||||
|     var obj = {}; | ||||
| 
 | ||||
|     obj.Input = []; | ||||
|     obj.Output = []; | ||||
|     obj.Order = []; | ||||
|      | ||||
|     NN.TrainingSet.Instances.push(obj); | ||||
|     return obj; | ||||
| }; | ||||
| NN.TrainingSet.AddPoint = function(inTrainingSet, inType, inData) | ||||
| { | ||||
|     inTrainingSet.Input.push(inData); | ||||
|     inTrainingSet.Output.push(inType); | ||||
|     inTrainingSet.Order.push(inTrainingSet.Order.length); | ||||
| }; | ||||
| NN.TrainingSet.AddCloud = function(inTrainingSet, inLabel, inCloud) | ||||
| { | ||||
|     var i; | ||||
|     for(i=0; i<inCloud.length; i++) | ||||
|     { | ||||
|         NN.TrainingSet.AddPoint(inTrainingSet, inLabel, inCloud[i]); | ||||
|     } | ||||
| }; | ||||
| NN.TrainingSet.Randomize = function(inTrainingSet) | ||||
| { | ||||
|       var newOrder = []; | ||||
|       var selection; | ||||
|       while(inTrainingSet.Order.length != 0) | ||||
|       { | ||||
|           selection = Math.floor(inTrainingSet.Order.length * Math.random()); | ||||
|           inTrainingSet.Order.splice(selection, 1); | ||||
|           newOrder.push(selection); | ||||
|       } | ||||
|       inTrainingSet.Order = newOrder; | ||||
| }; | ||||
| 
 | ||||
| 
 | ||||
| NN.Layer = {}; | ||||
| NN.Layer.Create = function(sizeIn, sizeOut) | ||||
| { | ||||
|     var i; | ||||
|     var min = []; | ||||
|     var max = []; | ||||
|     var obj = {}; | ||||
|      | ||||
|     sizeIn++; | ||||
|      | ||||
|     obj.Forward = {}; | ||||
|     for(i=0; i<sizeIn; i++) | ||||
|     { | ||||
|         min.push(-1); | ||||
|         max.push(1); | ||||
|     } | ||||
|     obj.Forward.Matrix = M.Box([min, max], sizeOut); | ||||
|     obj.Forward.StageInput = []; | ||||
|     obj.Forward.StageAffine = []; | ||||
|     obj.Forward.StageSigmoid = []; | ||||
|     obj.Forward.StageDerivative = []; | ||||
|      | ||||
|     obj.Backward = {}; | ||||
|     obj.Backward.Matrix = M.Transpose(obj.Forward.Matrix); | ||||
|     obj.Backward.StageInput = []; | ||||
|     obj.Backward.StageDerivative = []; | ||||
|     obj.Backward.StageAffine = []; | ||||
|      | ||||
|     return obj; | ||||
| }; | ||||
| NN.Layer.Forward = function(inLayer, inInput) | ||||
| { | ||||
|     inLayer.Forward.StageInput = M.Pad(inInput); // Pad the input
 | ||||
|     inLayer.Forward.StageAffine = M.Transform(inLayer.Forward.Matrix, inLayer.Forward.StageInput); | ||||
|     inLayer.Forward.StageSigmoid = M.Sigmoid(inLayer.Forward.StageAffine); | ||||
|      | ||||
|     return inLayer.Forward.StageSigmoid; | ||||
| }; | ||||
| NN.Layer.Error = function(inLayer, inTarget) | ||||
| { | ||||
|     return M.Subtract(inLayer.Forward.StageSigmoid, inTarget); | ||||
| }; | ||||
| NN.Layer.Backward = function(inLayer, inInput) | ||||
| { | ||||
|     /* We need the derivative of the forward pass, but only during the backward pass. | ||||
|     That's why-- even though it "belongs" to the forward pass-- it is being calculated here. */ | ||||
|     inLayer.Forward.StageDerivative = M.Derivative(inLayer.Forward.StageSigmoid); | ||||
|      | ||||
|     /* This transpose matrix is for sending the error back to a previous layer. | ||||
|     And again, even though it is derived directly from the forward matrix, it is only needed during the backward pass so we calculate it here.*/ | ||||
|     inLayer.Backward.Matrix = M.Transpose(inLayer.Forward.Matrix); | ||||
|      | ||||
|     /* When the error vector arrives at a layer, it always needs to be multiplied (read 'supressed') by the derivative of | ||||
|     what the layer output earlier during the forward pass. | ||||
|     So despite its name, Backward.StageDerivative contains the result of this *multiplication* and not some new derivative calculation.*/ | ||||
|     inLayer.Backward.StageInput = inInput; | ||||
|     inLayer.Backward.StageDerivative = M.Multiply(inLayer.Backward.StageInput, inLayer.Forward.StageDerivative); | ||||
|     inLayer.Backward.StageAffine = M.Transform(inLayer.Backward.Matrix, inLayer.Backward.StageDerivative); | ||||
|      | ||||
|     return M.Unpad(inLayer.Backward.StageAffine);// Unpad the output
 | ||||
| }; | ||||
| NN.Layer.Adjust = function(inLayer, inLearningRate) | ||||
| { | ||||
|     var deltas; | ||||
|     var vector; | ||||
|     var scalar; | ||||
|     var i, j; | ||||
|      | ||||
|     for(i=0; i<inLayer.Forward.StageInput.length; i++) | ||||
|     { | ||||
|         deltas = M.Outer(inLayer.Forward.StageInput[i], inLayer.Backward.StageDerivative[i]); | ||||
|         deltas = M.Scale(deltas, inLearningRate); | ||||
|          | ||||
|         inLayer.Forward.Matrix = M.Subtract(inLayer.Forward.Matrix, deltas); | ||||
|     } | ||||
| }; | ||||
| NN.Layer.Stochastic = function(inLayer, inTrainingSet, inIterations) | ||||
| { | ||||
|     /* this method is ONLY for testing individual layers, and does not translate to network-level training */ | ||||
|     var i, j; | ||||
|     var current; | ||||
|     var error; | ||||
|     for(i=0; i<inIterations; i++) | ||||
|     { | ||||
|         NN.TrainingSet.Randomize(inTrainingSet); | ||||
|         for(j=0; j<inTrainingSet.Order.length; j++) | ||||
|         { | ||||
|             current = inTrainingSet.Order[j]; | ||||
|             NN.Layer.Forward(inLayer, [inTrainingSet.Input[current]]); | ||||
|             error = M.Subtract(inLayer.Forward.StageSigmoid, [inTrainingSet.Output[current]]); | ||||
|             NN.Layer.Backward(inLayer, error); | ||||
|             NN.Layer.Adjust(inLayer, 0.1); | ||||
|         } | ||||
|     } | ||||
| }; | ||||
| 
 | ||||
| NN.Network = {}; | ||||
| NN.Network.Instances = []; | ||||
| NN.Network.Create = function() | ||||
| { | ||||
|     var obj = {}; | ||||
|     var i;     | ||||
|      | ||||
|     obj.Layers = []; | ||||
|     obj.LearningRate = 0.8; | ||||
|     obj.Error = []; | ||||
|      | ||||
|     for(i=0; i<arguments.length-1; i++) | ||||
|     { | ||||
|         obj.Layers.push(NN.Layer.Create(arguments[i], arguments[i+1])); | ||||
|     } | ||||
|      | ||||
|     NN.Network.Instances.push(obj); | ||||
|     return obj; | ||||
| }; | ||||
| NN.Network.Observe = function(inNetwork, inBatch) | ||||
| { | ||||
|       var input = M.Clone(inBatch); | ||||
|       var i; | ||||
|       for(i=0; i<inNetwork.Layers.length; i++) | ||||
|       { | ||||
|           input = NN.Layer.Forward(inNetwork.Layers[i], input); | ||||
|       } | ||||
|       return inNetwork.Layers[inNetwork.Layers.length-1].Forward.StageSigmoid; | ||||
| }; | ||||
| NN.Network.Error = function(inNetwork, inTraining) | ||||
| { | ||||
|       return M.Subtract(inNetwork.Layers[inNetwork.Layers.length-1].Forward.StageSigmoid, inTraining); | ||||
| }; | ||||
| NN.Network.Learn = function(inNetwork, inError) | ||||
| { | ||||
|       var input = inError; | ||||
|       var i; | ||||
|       for(i=inNetwork.Layers.length-1; i>=0; i--) | ||||
|       { | ||||
|           input = NN.Layer.Backward(inNetwork.Layers[i], input); | ||||
|           NN.Layer.Adjust(inNetwork.Layers[i], inNetwork.LearningRate); | ||||
|       } | ||||
| }; | ||||
| 
 | ||||
| 
 | ||||
| NN.Network.Batch = function(inNetwork, inTrainingSet, inIterations) | ||||
| { | ||||
|     var i; | ||||
|     for(i=0; i<inIterations; i++) | ||||
|     { | ||||
|         NN.Network.Observe(inNetwork, inTrainingSet.Input); | ||||
|         inNetwork.Error = NN.Network.Error(inNetwork, inTrainingSet.Output) | ||||
|         NN.Network.Learn(inNetwork, inNetwork.Error); | ||||
|     } | ||||
| }; | ||||
| NN.Network.Stochastic = function(inNetwork, inTrainingSet, inIterations) | ||||
| { | ||||
|     var i, j; | ||||
|     var current; | ||||
|      | ||||
|     for(i=0; i<inIterations; i++) | ||||
|     { | ||||
|         NN.TrainingSet.Randomize(inTrainingSet); | ||||
|         for(j=0; j<inTrainingSet.Order.length; j++) | ||||
|         { | ||||
|             current = inTrainingSet.Order[j]; | ||||
|             NN.Network.Observe(inNetwork, [inTrainingSet.Input[current]]); | ||||
|             inNetwork.Error = NN.Network.Error(inNetwork, [inTrainingSet.Output[current]]); | ||||
|             NN.Network.Learn(inNetwork, inNetwork.Error); | ||||
|         } | ||||
|     } | ||||
| }; | ||||
		Loading…
	
		Reference in New Issue
	
	Block a user