# Contributing Contributions are welcome and are greatly appreciated! Every little bit helps, and credit will always be given. ## Table of Contents - [Contributing](#contributing) - [Table of Contents](#table-of-contents) - [Orientation](#orientation) - [Types of Contributions](#types-of-contributions) - [Report Bug](#report-bug) - [Submit Ideas or Feature Requests](#submit-ideas-or-feature-requests) - [Fix Bugs](#fix-bugs) - [Implement Features](#implement-features) - [Improve Documentation](#improve-documentation) - [Add Translations](#add-translations) - [Ask Questions](#ask-questions) - [Pull Request Guidelines](#pull-request-guidelines) - [Protocol](#protocol) - [Authoring](#authoring) - [Reviewing](#reviewing) - [Test Environments](#test-environments) - [Merging](#merging) - [Post-merge Responsibility](#post-merge-responsibility) - [Design Guidelines](#design-guidelines) - [Capitalization guidelines](#capitalization-guidelines) - [Sentence case](#sentence-case) - [How to refer to UI elements](#how-to-refer-to-ui-elements) - [\*\*Exceptions to sentence case:](#exceptions-to-sentence-case) - [Managing Issues and PRs](#managing-issues-and-prs) - [Reporting a Security Vulnerability](#reporting-a-security-vulnerability) - [Revert Guidelines](#revert-guidelines) - [Setup Local Environment for Development](#setup-local-environment-for-development) - [Documentation](#documentation) - [Local Development](#local-development) - [Build](#build) - [Deployment](#deployment) - [Flask server](#flask-server) - [OS Dependencies](#os-dependencies) - [Dependencies](#dependencies) - [Logging to the browser console](#logging-to-the-browser-console) - [Frontend](#frontend) - [Prerequisite](#prerequisite) - [nvm and node](#nvm-and-node) - [Install dependencies](#install-dependencies) - [Build assets](#build-assets) - [Webpack dev server](#webpack-dev-server) - [Other npm commands](#other-npm-commands) - [Docker (docker compose)](#docker-docker-compose) - [Updating NPM packages](#updating-npm-packages) - [Feature flags](#feature-flags) - [Git Hooks](#git-hooks) - [Linting](#linting) - [Python](#python) - [TypeScript](#typescript) - [Conventions](#conventions) - [Python Conventions](#python-conventions) - [Typing](#typing) - [Python Typing](#python-typing) - [TypeScript Typing](#typescript-typing) - [Testing](#testing) - [Python Testing](#python-testing) - [Frontend Testing](#frontend-testing) - [Integration Testing](#integration-testing) - [Debugging Server App](#debugging-server-app) - [Debugging Server App in Kubernetes Environment](#debugging-server-app-in-kubernetes-environment) - [Storybook](#storybook) - [Translating](#translating) - [Enabling language selection](#enabling-language-selection) - [Updating language files](#updating-language-files) - [Creating a new language dictionary](#creating-a-new-language-dictionary) - [Tips](#tips) - [Adding a new datasource](#adding-a-new-datasource) - [Visualization Plugins](#visualization-plugins) - [Adding a DB migration](#adding-a-db-migration) - [Merging DB migrations](#merging-db-migrations) - [SQL Lab Async](#sql-lab-async) - [Async Chart Queries](#async-chart-queries) - [Chart Parameters](#chart-parameters) - [Datasource \& Chart Type](#datasource--chart-type) - [Time](#time) - [GROUP BY](#group-by) - [NOT GROUPED BY](#not-grouped-by) - [Y Axis 1](#y-axis-1) - [Y Axis 2](#y-axis-2) - [Query](#query) - [Chart Options](#chart-options) - [Y Axis](#y-axis) - [Other](#other) - [Unclassified](#unclassified) ## Orientation Here's a list of repositories that contain Superset-related packages: - [apache/superset](https://github.com/apache/superset) is the main repository containing the `apache-superset` Python package distributed on [pypi](https://pypi.org/project/apache-superset/). This repository also includes Superset's main TypeScript/JavaScript bundles and react apps under the [superset-frontend](https://github.com/apache/superset/tree/master/superset-frontend) folder. - [github.com/apache-superset](https://github.com/apache-superset) is the GitHub organization under which we manage Superset-related small tools, forks and Superset-related experimental ideas. ## Types of Contributions ### Report a Bug The best way to report a bug is to file an issue on GitHub. Please include: - Your operating system name and version. - Superset version. - Detailed steps to reproduce the bug. - Any details about your local setup that might be helpful in troubleshooting. When posting Python stack traces, please quote them using [Markdown blocks](https://help.github.com/articles/creating-and-highlighting-code-blocks/). _Please note that feature requests opened as GitHub Issues will be moved to Discussions._ ### Submit Ideas or Feature Requests The best way is to start an ["Ideas" Discussion thread](https://github.com/apache/superset/discussions/categories/ideas) on GitHub: - Explain in detail how it would work. - Keep the scope as narrow as possible, to make it easier to implement. - Remember that this is a volunteer-driven project, and that your contributions are as welcome as anyone's :) To propose large features or major changes to codebase, and help usher in those changes, please create a **Superset Improvement Proposal (SIP)**. See template from [SIP-0](https://github.com/apache/superset/issues/5602) ### Fix Bugs Look through the GitHub issues. Issues tagged with `#bug` are open to whoever wants to implement them. ### Implement Features Look through the GitHub issues. Issues tagged with `#feature` is open to whoever wants to implement it. ### Improve Documentation Superset could always use better documentation, whether as part of the official Superset docs, in docstrings, or even on the web as blog posts or articles. See [Documentation](#documentation) for more details. ### Add Translations If you are proficient in a non-English language, you can help translate text strings from Superset's UI. You can jump into the existing language dictionaries at `superset/translations//LC_MESSAGES/messages.po`, or even create a dictionary for a new language altogether. See [Translating](#translating) for more details. ### Ask Questions There is a dedicated [`apache-superset` tag](https://stackoverflow.com/questions/tagged/apache-superset) on [StackOverflow](https://stackoverflow.com/). Please use it when asking questions. ## Types of Contributors Following the project governance model of the Apache Software Foundation (ASF), Apache Superset has a specific set of contributor roles: ### PMC Member A Project Management Committee (PMC) member is a person who has been elected by the PMC to help manage the project. PMC members are responsible for the overall health of the project, including community development, release management, and project governance. PMC members are also responsible for the technical direction of the project. For more information about Apache Project PMCs, please refer to https://www.apache.org/foundation/governance/pmcs.html ### Committer A committer is a person who has been elected by the PMC to have write access (commit access) to the code repository. They can modify the code, documentation, and website and accept contributions from others. The official list of committers and PMC members can be found [here](https://projects.apache.org/committee.html?superset). ### Contributor A contributor is a person who has contributed to the project in any way, including but not limited to code, tests, documentation, issues, and discussions. > You can also review the Superset project's guidelines for PMC member promotion here: https://github.com/apache/superset/wiki/Guidelines-for-promoting-Superset-Committers-to-the-Superset-PMC ### Security Team The security team is a selected subset of PMC members, committers and non-committers who are responsible for handling security issues. New members of the security team are selected by the PMC members in a vote. You can request to be added to the team by sending a message to private@superset.apache.org. However, the team should be small and focused on solving security issues, so the requests will be evaluated on a case-by-case basis and the team size will be kept relatively small, limited to only actively security-focused contributors. This security team must follow the [ASF vulnerability handling process](https://apache.org/security/committers.html#asf-project-security-for-committers). Each new security issue is tracked as a JIRA ticket on the [ASF's JIRA Superset security project](https://issues.apache.org/jira/secure/RapidBoard.jspa?rapidView=588&projectKey=SUPERSETSEC) Security team members must: - Have an [ICLA](https://www.apache.org/licenses/contributor-agreements.html) signed with Apache Software Foundation. - Not reveal information about pending and unfixed security issues to anyone (including their employers) unless specifically authorised by the security team members, e.g., if the security team agrees that diagnosing and solving an issue requires the involvement of external experts. A release manager, the contributor overseeing the release of a specific version of Apache Superset, is by default a member of the security team. However, they are not expected to be active in assessing, discussing, and fixing security issues. Security team members should also follow these general expectations: - Actively participate in assessing, discussing, fixing, and releasing security issues in Superset. - Avoid discussing security fixes in public forums. Pull request (PR) descriptions should not contain any information about security issues. The corresponding JIRA ticket should contain a link to the PR. - Security team members who contribute to a fix may be listed as remediation developers in the CVE report, along with their job affiliation (if they choose to include it). ## Pull Request Guidelines A philosophy we would like to strongly encourage is > Before creating a PR, create an issue. The purpose is to separate problem from possible solutions. **Bug fixes:** If you’re only fixing a small bug, it’s fine to submit a pull request right away but we highly recommend to file an issue detailing what you’re fixing. This is helpful in case we don’t accept that specific fix but want to keep track of the issue. Please keep in mind that the project maintainers reserve the rights to accept or reject incoming PRs, so it is better to separate the issue and the code to fix it from each other. In some cases, project maintainers may request you to create a separate issue from PR before proceeding. **Refactor:** For small refactors, it can be a standalone PR itself detailing what you are refactoring and why. If there are concerns, project maintainers may request you to create a `#SIP` for the PR before proceeding. **Feature/Large changes:** If you intend to change the public API, or make any non-trivial changes to the implementation, we require you to file a new issue as `#SIP` (Superset Improvement Proposal). This lets us reach an agreement on your proposal before you put significant effort into it. You are welcome to submit a PR along with the SIP (sometimes necessary for demonstration), but we will not review/merge the code until the SIP is approved. In general, small PRs are always easier to review than large PRs. The best practice is to break your work into smaller independent PRs and refer to the same issue. This will greatly reduce turnaround time. If you wish to share your work which is not ready to merge yet, create a [Draft PR](https://github.blog/2019-02-14-introducing-draft-pull-requests/). This will enable maintainers and the CI runner to prioritize mature PR's. Finally, never submit a PR that will put master branch in broken state. If the PR is part of multiple PRs to complete a large feature and cannot work on its own, you can create a feature branch and merge all related PRs into the feature branch before creating a PR from feature branch to master. ### Protocol #### Authoring - Fill in all sections of the PR template. - Title the PR with one of the following semantic prefixes (inspired by [Karma](http://karma-runner.github.io/0.10/dev/git-commit-msg.html)): - `feat` (new feature) - `fix` (bug fix) - `docs` (changes to the documentation) - `style` (formatting, missing semi colons, etc; no application logic change) - `refactor` (refactoring code) - `test` (adding missing tests, refactoring tests; no application logic change) - `chore` (updating tasks etc; no application logic change) - `perf` (performance-related change) - `build` (build tooling, Docker configuration change) - `ci` (test runner, GitHub Actions workflow changes) - `other` (changes that don't correspond to the above -- should be rare!) - Examples: - `feat: export charts as ZIP files` - `perf(api): improve API info performance` - `fix(chart-api): cached-indicator always shows value is cached` - Add prefix `[WIP]` to title if not ready for review (WIP = work-in-progress). We recommend creating a PR with `[WIP]` first and remove it once you have passed CI test and read through your code changes at least once. - If you believe your PR contributes a potentially breaking change, put a `!` after the semantic prefix but before the colon in the PR title, like so: `feat!: Added foo functionality to bar` - **Screenshots/GIFs:** Changes to user interface require before/after screenshots, or GIF for interactions - Recommended capture tools ([Kap](https://getkap.co/), [LICEcap](https://www.cockos.com/licecap/), [Skitch](https://download.cnet.com/Skitch/3000-13455_4-189876.html)) - If no screenshot is provided, the committers will mark the PR with `need:screenshot` label and will not review until screenshot is provided. - **Dependencies:** Be careful about adding new dependency and avoid unnecessary dependencies. - For Python, include it in `setup.py` denoting any specific restrictions and in `requirements.txt` pinned to a specific version which ensures that the application build is deterministic. - For TypeScript/JavaScript, include new libraries in `package.json` - **Tests:** The pull request should include tests, either as doctests, unit tests, or both. Make sure to resolve all errors and test failures. See [Testing](#testing) for how to run tests. - **Documentation:** If the pull request adds functionality, the docs should be updated as part of the same PR. - **CI:** Reviewers will not review the code until all CI tests are passed. Sometimes there can be flaky tests. You can close and open PR to re-run CI test. Please report if the issue persists. After the CI fix has been deployed to `master`, please rebase your PR. - **Code coverage:** Please ensure that code coverage does not decrease. - Remove `[WIP]` when ready for review. Please note that it may be merged soon after approved so please make sure the PR is ready to merge and do not expect more time for post-approval edits. - If the PR was not ready for review and inactive for > 30 days, we will close it due to inactivity. The author is welcome to re-open and update. #### Reviewing - Use constructive tone when writing reviews. - If there are changes required, state clearly what needs to be done before the PR can be approved. - If you are asked to update your pull request with some changes there's no need to create a new one. Push your changes to the same branch. - The committers reserve the right to reject any PR and in some cases may request the author to file an issue. #### Test Environments - Members of the Apache GitHub org can launch an ephemeral test environment directly on a pull request by creating a comment containing (only) the command `/testenv up`. - Note that org membership must be public in order for this validation to function properly. - Feature flags may be set for a test environment by specifying the flag name (prefixed with `FEATURE_`) and value after the command. - Format: `/testenv up FEATURE_=true|false` - Example: `/testenv up FEATURE_DASHBOARD_NATIVE_FILTERS=true` - Multiple feature flags may be set in single command, separated by whitespace - A comment will be created by the workflow script with the address and login information for the ephemeral environment. - Test environments may be created once the Docker build CI workflow for the PR has completed successfully. - Test environments do not currently update automatically when new commits are added to a pull request. - Test environments do not currently support async workers, though this is planned. - Running test environments will be shutdown upon closing the pull request. #### Merging - At least one approval is required for merging a PR. - PR is usually left open for at least 24 hours before merging. - After the PR is merged, [close the corresponding issue(s)](https://help.github.com/articles/closing-issues-using-keywords/). #### Post-merge Responsibility - Project maintainers may contact the PR author if new issues are introduced by the PR. - Project maintainers may revert your changes if a critical issue is found, such as breaking master branch CI. ## Design Guidelines ### Capitalization guidelines #### Sentence case Use sentence-case capitalization for everything in the UI (except these \*\*). Sentence case is predominantly lowercase. Capitalize only the initial character of the first word, and other words that require capitalization, like: - **Proper nouns.** Objects in the product _are not_ considered proper nouns e.g. dashboards, charts, saved queries etc. Proprietary feature names eg. SQL Lab, Preset Manager _are_ considered proper nouns - **Acronyms** (e.g. CSS, HTML) - When referring to **UI labels that are themselves capitalized** from sentence case (e.g. page titles - Dashboards page, Charts page, Saved queries page, etc.) - User input that is reflected in the UI. E.g. a user-named a dashboard tab **Sentence case vs. Title case:** Title case: "A Dog Takes a Walk in Paris" Sentence case: "A dog takes a walk in Paris" **Why sentence case?** - It’s generally accepted as the quickest to read - It’s the easiest form to distinguish between common and proper nouns #### How to refer to UI elements When writing about a UI element, use the same capitalization as used in the UI. For example, if an input field is labeled “Name” then you refer to this as the “Name input field”. Similarly, if a button has the label “Save” in it, then it is correct to refer to the “Save button”. Where a product page is titled “Settings”, you refer to this in writing as follows: “Edit your personal information on the Settings page”. Often a product page will have the same title as the objects it contains. In this case, refer to the page as it appears in the UI, and the objects as common nouns: - Upload a dashboard on the Dashboards page - Go to Dashboards - View dashboard - View all dashboards - Upload CSS templates on the CSS templates page - Queries that you save will appear on the Saved queries page - Create custom queries in SQL Lab then create dashboards #### \*\*Exceptions to sentence case: - Input labels, buttons and UI tabs are all caps - User input values (e.g. column names, SQL Lab tab names) should be in their original case ## Managing Issues and PRs To handle issues and PRs that are coming in, committers read issues/PRs and flag them with labels to categorize and help contributors spot where to take actions, as contributors usually have different expertises. Triaging goals - **For issues:** Categorize, screen issues, flag required actions from authors. - **For PRs:** Categorize, flag required actions from authors. If PR is ready for review, flag required actions from reviewers. First, add **Category labels (a.k.a. hash labels)**. Every issue/PR must have one hash label (except spam entry). Labels that begin with `#` defines issue/PR type: | Label | for Issue | for PR | | --------------- | ----------------------------------------------------------------------------------------------------------------------- | ------------------------------------------------------------------------------------------------------------------------------------------------- | | `#bug` | Bug report | Bug fix | | `#code-quality` | Describe problem with code, architecture or productivity | Refactor, tests, tooling | | `#feature` | New feature request | New feature implementation | | `#refine` | Propose improvement such as adjusting padding or refining UI style, excluding new features, bug fixes, and refactoring. | Implementation of improvement such as adjusting padding or refining UI style, excluding new features, bug fixes, and refactoring. | | `#doc` | Documentation | Documentation | | `#question` | Troubleshooting: Installation, Running locally, Ask how to do something. Can be changed to `#bug` later. | N/A | | `#SIP` | Superset Improvement Proposal | N/A | | `#ASF` | Tasks related to Apache Software Foundation policy | Tasks related to Apache Software Foundation policy | Then add other types of labels as appropriate. - **Descriptive labels (a.k.a. dot labels):** These labels that begin with `.` describe the details of the issue/PR, such as `.ui`, `.js`, `.install`, `.backend`, etc. Each issue/PR can have zero or more dot labels. - **Need labels:** These labels have pattern `need:xxx`, which describe the work required to progress, such as `need:rebase`, `need:update`, `need:screenshot`. - **Risk labels:** These labels have pattern `risk:xxx`, which describe the potential risk on adopting the work, such as `risk:db-migration`. The intention was to better understand the impact and create awareness for PRs that need more rigorous testing. - **Status labels:** These labels describe the status (`abandoned`, `wontfix`, `cant-reproduce`, etc.) Issue/PRs that are rejected or closed without completion should have one or more status labels. - **Version labels:** These have the pattern `vx.x` such as `v0.28`. Version labels on issues describe the version the bug was reported on. Version labels on PR describe the first release that will include the PR. Committers may also update title to reflect the issue/PR content if the author-provided title is not descriptive enough. If the PR passes CI tests and does not have any `need:` labels, it is ready for review, add label `review` and/or `design-review`. If an issue/PR has been inactive for >=30 days, it will be closed. If it does not have any status label, add `inactive`. When creating a PR, if you're aiming to have it included in a specific release, please tag it with the version label. For example, to have a PR considered for inclusion in Superset 1.1 use the label `v1.1`. ## Reporting a Security Vulnerability Please report security vulnerabilities to private@superset.apache.org. In the event a community member discovers a security flaw in Superset, it is important to follow the [Apache Security Guidelines](https://www.apache.org/security/committers.html) and release a fix as quickly as possible before public disclosure. Reporting security vulnerabilities through the usual GitHub Issues channel is not ideal as it will publicize the flaw before a fix can be applied. ## Revert Guidelines Reverting changes that are causing issues in the master branch is a normal and expected part of the development process. In an open source community, the ramifications of a change cannot always be fully understood. With that in mind, here are some considerations to keep in mind when considering a revert: - **Availability of the PR author:** If the original PR author or the engineer who merged the code is highly available and can provide a fix in a reasonable time frame, this would counter-indicate reverting. - **Severity of the issue:** How severe is the problem on master? Is it keeping the project from moving forward? Is there user impact? What percentage of users will experience a problem? - **Size of the change being reverted:** Reverting a single small PR is a much lower-risk proposition than reverting a massive, multi-PR change. - **Age of the change being reverted:** Reverting a recently-merged PR will be more acceptable than reverting an older PR. A bug discovered in an older PR is unlikely to be causing widespread serious issues. - **Risk inherent in reverting:** Will the reversion break critical functionality? Is the medicine more dangerous than the disease? - **Difficulty of crafting a fix:** In the case of issues with a clear solution, it may be preferable to implement and merge a fix rather than a revert. Should you decide that reverting is desirable, it is the responsibility of the Contributor performing the revert to: - **Contact the interested parties:** The PR's author and the engineer who merged the work should both be contacted and informed of the revert. - **Provide concise reproduction steps:** Ensure that the issue can be clearly understood and duplicated by the original author of the PR. - **Put the revert through code review:** The revert must be approved by another committer. ## Setup Local Environment for Development First, [fork the repository on GitHub](https://help.github.com/articles/about-forks/), then clone it. You can clone the main repository directly, but you won't be able to send pull requests. ```bash git clone git@github.com:your-username/superset.git cd superset ``` ### Documentation The latest documentation and tutorial are available at https://superset.apache.org/. The documentation site is built using [Docusaurus 2](https://docusaurus.io/), a modern static website generator, the source for which resides in `./docs`. #### Local Development To set up a local development environment with hot reloading for the documentation site: ```shell cd docs yarn install # Installs NPM dependencies yarn start # Starts development server at http://localhost:3000 ``` #### Build To create and serve a production build of the documentation site: ```shell yarn build yarn serve ``` #### Deployment Commits to `master` trigger a rebuild and redeploy of the documentation site. Submit pull requests that modify the documentation with the `docs:` prefix. ### Flask server #### OS Dependencies Make sure your machine meets the [OS dependencies](https://superset.apache.org/docs/installation/installing-superset-from-scratch#os-dependencies) before following these steps. You also need to install MySQL or [MariaDB](https://mariadb.com/downloads). Ensure that you are using Python version 3.9, 3.10 or 3.11, then proceed with: ```bash # Create a virtual environment and activate it (recommended) python3 -m venv venv # setup a python3 virtualenv source venv/bin/activate # Install external dependencies pip install -r requirements/development.txt # Install Superset in editable (development) mode pip install -e . # Initialize the database superset db upgrade # Create an admin user in your metadata database (use `admin` as username to be able to load the examples) superset fab create-admin # Create default roles and permissions superset init # Load some data to play with. # Note: you MUST have previously created an admin user with the username `admin` for this command to work. superset load-examples # Start the Flask dev web server from inside your virtualenv. # Note that your page may not have CSS at this point. # See instructions below how to build the front-end assets. superset run -p 8088 --with-threads --reload --debugger --debug ``` Or you can install via our Makefile ```bash # Create a virtual environment and activate it (recommended) $ python3 -m venv venv # setup a python3 virtualenv $ source venv/bin/activate # install pip packages + pre-commit $ make install # Install superset pip packages and setup env only $ make superset # Setup pre-commit only $ make pre-commit ``` **Note: the FLASK_APP env var should not need to be set, as it's currently controlled via `.flaskenv`, however if needed, it should be set to `superset.app:create_app()`** If you have made changes to the FAB-managed templates, which are not built the same way as the newer, React-powered front-end assets, you need to start the app without the `--with-threads` argument like so: `superset run -p 8088 --reload --debugger --debug` #### Dependencies If you add a new requirement or update an existing requirement (per the `install_requires` section in `setup.py`) you must recompile (freeze) the Python dependencies to ensure that for CI, testing, etc. the build is deterministic. This can be achieved via, ```bash $ python3 -m venv venv $ source venv/bin/activate $ python3 -m pip install -r requirements/development.txt $ pip-compile-multi --no-upgrade ``` When upgrading the version number of a single package, you should run `pip-compile-multi` with the `-P` flag: ```bash $ pip-compile-multi -P my-package ``` To bring all dependencies up to date as per the restrictions defined in `setup.py` and `requirements/*.in`, run pip-compile-multi` without any flags: ```bash $ pip-compile-multi ``` This should be done periodically, but it is recommended to do thorough manual testing of the application to ensure no breaking changes have been introduced that aren't caught by the unit and integration tests. #### Logging to the browser console This feature is only available on Python 3. When debugging your application, you can have the server logs sent directly to the browser console using the [ConsoleLog](https://github.com/betodealmeida/consolelog) package. You need to mutate the app, by adding the following to your `config.py` or `superset_config.py`: ```python from console_log import ConsoleLog def FLASK_APP_MUTATOR(app): app.wsgi_app = ConsoleLog(app.wsgi_app, app.logger) ``` Then make sure you run your WSGI server using the right worker type: ```bash gunicorn "superset.app:create_app()" -k "geventwebsocket.gunicorn.workers.GeventWebSocketWorker" -b 127.0.0.1:8088 --reload ``` You can log anything to the browser console, including objects: ```python from superset import app app.logger.error('An exception occurred!') app.logger.info(form_data) ``` ### Frontend Frontend assets (TypeScript, JavaScript, CSS, and images) must be compiled in order to properly display the web UI. The `superset-frontend` directory contains all NPM-managed frontend assets. Note that for some legacy pages there are additional frontend assets bundled with Flask-Appbuilder (e.g. jQuery and bootstrap). These are not managed by NPM and may be phased out in the future. #### Prerequisite ##### nvm and node First, be sure you are using the following versions of Node.js and npm: - `Node.js`: Version 18 - `npm`: Version 10 We recommend using [nvm](https://github.com/nvm-sh/nvm) to manage your node environment: ```bash curl -o- https://raw.githubusercontent.com/nvm-sh/nvm/v0.37.0/install.sh | bash incase it shows '-bash: nvm: command not found' export NVM_DIR="$HOME/.nvm" [ -s "$NVM_DIR/nvm.sh" ] && \. "$NVM_DIR/nvm.sh" # This loads nvm [ -s "$NVM_DIR/bash_completion" ] && \. "$NVM_DIR/bash_completion" # This loads nvm bash_completion cd superset-frontend nvm install --lts nvm use --lts ``` Or if you use the default macOS starting with Catalina shell `zsh`, try: ```zsh sh -c "$(curl -fsSL https://raw.githubusercontent.com/nvm-sh/nvm/v0.37.0/install.sh)" ``` For those interested, you may also try out [avn](https://github.com/nvm-sh/nvm#deeper-shell-integration) to automatically switch to the node version that is required to run Superset frontend. #### Install dependencies Install third-party dependencies listed in `package.json` via: ```bash # From the root of the repository cd superset-frontend # Install dependencies from `package-lock.json` npm ci ``` Note that Superset uses [Scarf](https://docs.scarf.sh) to capture telemetry/analytics about versions being installed, including the `scarf-js` npm package and an analytics pixel. As noted elsewhere in this documentation, Scarf gathers aggregated stats for the sake of security/release strategy, and does not capture/retain PII. [You can read here](https://docs.scarf.sh/package-analytics/) about the `scarf-js` package, and various means to opt out of it, but you can opt out of the npm package _and_ the pixel by setting the `SCARF_ANALYTICS` envinronment variable to `false` or opt out of the pixel by adding this setting in `superset-frontent/package.json`: ```json // your-package/package.json { // ... "scarfSettings": { "enabled": false } // ... } ``` #### Build assets There are three types of assets you can build: 1. `npm run build`: the production assets, CSS/JSS minified and optimized 2. `npm run dev-server`: local development assets, with sourcemaps and hot refresh support 3. `npm run build-instrumented`: instrumented application code for collecting code coverage from Cypress tests If while using the above commands you encounter an error related to the limit of file watchers: ```bash Error: ENOSPC: System limit for number of file watchers reached ``` The error is thrown because the number of files monitored by the system has reached the limit. You can address this this error by increasing the number of inotify watchers. The current value of max watches can be checked with: ```bash cat /proc/sys/fs/inotify/max_user_watches ``` Edit the file /etc/sysctl.conf to increase this value. The value needs to be decided based on the system memory [(see this StackOverflow answer for more context)](https://stackoverflow.com/questions/535768/what-is-a-reasonable-amount-of-inotify-watches-with-linux). Open the file in editor and add a line at the bottom specifying the max watches values. ```bash fs.inotify.max_user_watches=524288 ``` Save the file and exit editor. To confirm that the change succeeded, run the following command to load the updated value of max_user_watches from sysctl.conf: ```bash sudo sysctl -p ``` #### Webpack dev server The dev server by default starts at `http://localhost:9000` and proxies the backend requests to `http://localhost:8088`. So a typical development workflow is the following: 1. [run Superset locally](#flask-server) using Flask, on port `8088` — but don't access it directly,
```bash # Install Superset and dependencies, plus load your virtual environment first, as detailed above. superset run -p 8088 --with-threads --reload --debugger --debug ``` 2. in parallel, run the Webpack dev server locally on port `9000`,
```bash npm run dev-server ``` 3. access `http://localhost:9000` (the Webpack server, _not_ Flask) in your web browser. This will use the hot-reloading front-end assets from the Webpack development server while redirecting back-end queries to Flask/Superset: your changes on Superset codebase — either front or back-end — will then be reflected live in the browser. It's possible to change the Webpack server settings: ```bash # Start the dev server at http://localhost:9000 npm run dev-server # Run the dev server on a non-default port npm run dev-server -- --port=9001 # Proxy backend requests to a Flask server running on a non-default port npm run dev-server -- --env=--supersetPort=8081 # Proxy to a remote backend but serve local assets npm run dev-server -- --env=--superset=https://superset-dev.example.com ``` The `--superset=` option is useful in case you want to debug a production issue or have to setup Superset behind a firewall. It allows you to run Flask server in another environment while keep assets building locally for the best developer experience. #### Other npm commands Alternatively, there are other NPM commands you may find useful: 1. `npm run build-dev`: build assets in development mode. 2. `npm run dev`: built dev assets in watch mode, will automatically rebuild when a file changes #### Docker (docker compose) See docs [here](docker/README.md) #### Updating NPM packages Use npm in the prescribed way, making sure that `superset-frontend/package-lock.json` is updated according to `npm`-prescribed best practices. #### Feature flags Superset supports a server-wide feature flag system, which eases the incremental development of features. To add a new feature flag, simply modify `superset_config.py` with something like the following: ```python FEATURE_FLAGS = { 'SCOPED_FILTER': True, } ``` If you want to use the same flag in the client code, also add it to the FeatureFlag TypeScript enum in [@superset-ui/core](https://github.com/apache/superset/blob/master/superset-frontend/packages/superset-ui-core/src/utils/featureFlags.ts). For example, ```typescript export enum FeatureFlag { SCOPED_FILTER = "SCOPED_FILTER", } ``` `superset/config.py` contains `DEFAULT_FEATURE_FLAGS` which will be overwritten by those specified under FEATURE_FLAGS in `superset_config.py`. For example, `DEFAULT_FEATURE_FLAGS = { 'FOO': True, 'BAR': False }` in `superset/config.py` and `FEATURE_FLAGS = { 'BAR': True, 'BAZ': True }` in `superset_config.py` will result in combined feature flags of `{ 'FOO': True, 'BAR': True, 'BAZ': True }`. The current status of the usability of each flag (stable vs testing, etc) can be found in `RESOURCES/FEATURE_FLAGS.md`. ## Git Hooks Superset uses Git pre-commit hooks courtesy of [pre-commit](https://pre-commit.com/). To install run the following: ```bash pip3 install -r requirements/development.txt pre-commit install ``` A series of checks will now run when you make a git commit. Alternatively it is possible to run pre-commit via tox: ```bash tox -e pre-commit ``` Or by running pre-commit manually: ```bash pre-commit run --all-files ``` ## Linting ### Python We use [Pylint](https://pylint.org/) for linting which can be invoked via: ```bash # for python tox -e pylint ``` In terms of best practices please avoid blanket disabling of Pylint messages globally (via `.pylintrc`) or top-level within the file header, albeit there being a few exceptions. Disabling should occur inline as it prevents masking issues and provides context as to why said message is disabled. Additionally, the Python code is auto-formatted using [Black](https://github.com/python/black) which is configured as a pre-commit hook. There are also numerous [editor integrations](https://black.readthedocs.io/en/stable/integrations/editors.html) ### TypeScript ```bash cd superset-frontend npm ci # run eslint checks npm run eslint -- . # run tsc (typescript) checks npm run type ``` If using the eslint extension with vscode, put the following in your workspace `settings.json` file: ```json "eslint.workingDirectories": [ "superset-frontend" ] ``` ## Conventions ### Python Conventions Parameters in the `config.py` (which are accessible via the Flask app.config dictionary) are assumed to always be defined and thus should be accessed directly via, ```python blueprints = app.config["BLUEPRINTS"] ``` rather than, ```python blueprints = app.config.get("BLUEPRINTS") ``` or similar as the later will cause typing issues. The former is of type `List[Callable]` whereas the later is of type `Optional[List[Callable]]`. ## Typing ### Python Typing To ensure clarity, consistency, all readability, _all_ new functions should use [type hints](https://docs.python.org/3/library/typing.html) and include a docstring. Note per [PEP-484](https://www.python.org/dev/peps/pep-0484/#exceptions) no syntax for listing explicitly raised exceptions is proposed and thus the recommendation is to put this information in a docstring, i.e., ```python import math from typing import Union def sqrt(x: Union[float, int]) -> Union[float, int]: """ Return the square root of x. :param x: A number :returns: The square root of the given number :raises ValueError: If the number is negative """ return math.sqrt(x) ``` ### TypeScript Typing TypeScript is fully supported and is the recommended language for writing all new frontend components. When modifying existing functions/components, migrating to TypeScript is appreciated, but not required. Examples of migrating functions/components to TypeScript can be found in [#9162](https://github.com/apache/superset/pull/9162) and [#9180](https://github.com/apache/superset/pull/9180). ## Testing ### Python Testing All python tests are carried out in [tox](https://tox.readthedocs.io/en/latest/index.html) a standardized testing framework. All python tests can be run with any of the tox [environments](https://tox.readthedocs.io/en/latest/example/basic.html#a-simple-tox-ini-default-environments), via, ```bash tox -e ``` For example, ```bash tox -e py38 ``` Alternatively, you can run all tests in a single file via, ```bash tox -e -- tests/test_file.py ``` or for a specific test via, ```bash tox -e -- tests/test_file.py::TestClassName::test_method_name ``` Note that the test environment uses a temporary directory for defining the SQLite databases which will be cleared each time before the group of test commands are invoked. There is also a utility script included in the Superset codebase to run python integration tests. The [readme can be found here](https://github.com/apache/superset/tree/master/scripts/tests) To run all integration tests for example, run this script from the root directory: ```bash scripts/tests/run.sh ``` You can run unit tests found in './tests/unit_tests' for example with pytest. It is a simple way to run an isolated test that doesn't need any database setup ```bash pytest ./link_to_test.py ``` ### Frontend Testing We use [Jest](https://jestjs.io/) and [Enzyme](https://airbnb.io/enzyme/) to test TypeScript/JavaScript. Tests can be run with: ```bash cd superset-frontend npm run test ``` To run a single test file: ```bash npm run test -- path/to/file.js ``` ### Integration Testing We use [Cypress](https://www.cypress.io/) for integration tests. Tests can be run by `tox -e cypress`. To open Cypress and explore tests first setup and run test server: ```bash export SUPERSET_CONFIG=tests.integration_tests.superset_test_config export SUPERSET_TESTENV=true export CYPRESS_BASE_URL="http://localhost:8081" superset db upgrade superset load_test_users superset load-examples --load-test-data superset init superset run --port 8081 ``` Run Cypress tests: ```bash cd superset-frontend npm run build-instrumented cd cypress-base npm install # run tests via headless Chrome browser (requires Chrome 64+) npm run cypress-run-chrome # run tests from a specific file npm run cypress-run-chrome -- --spec cypress/e2e/explore/link.test.ts # run specific file with video capture npm run cypress-run-chrome -- --spec cypress/e2e/dashboard/index.test.js --config video=true # to open the cypress ui npm run cypress-debug # to point cypress to a url other than the default (http://localhost:8088) set the environment variable before running the script # e.g., CYPRESS_BASE_URL="http://localhost:9000" CYPRESS_BASE_URL= npm run cypress open ``` See [`superset-frontend/cypress_build.sh`](https://github.com/apache/superset/blob/master/superset-frontend/cypress_build.sh). As an alternative you can use docker compose environment for testing: Make sure you have added below line to your /etc/hosts file: `127.0.0.1 db` If you already have launched Docker environment please use the following command to assure a fresh database instance: `docker compose down -v` Launch environment: `CYPRESS_CONFIG=true docker compose up` It will serve backend and frontend on port 8088. Run Cypress tests: ```bash cd cypress-base npm install npm run cypress open ``` ### Debugging Server App #### Local For debugging locally using VSCode, you can configure a launch configuration file .vscode/launch.json such as ```json { "version": "0.2.0", "configurations": [ { "name": "Python: Flask", "type": "python", "request": "launch", "module": "flask", "env": { "FLASK_APP": "superset", "SUPERSET_ENV": "development" }, "args": ["run", "-p 8088", "--with-threads", "--reload", "--debugger"], "jinja": true, "justMyCode": true } ] } ``` #### Docker Follow these instructions to debug the Flask app running inside a docker container. First add the following to the ./docker-compose.yaml file ```diff superset: env_file: docker/.env image: *superset-image container_name: superset_app command: ["/app/docker/docker-bootstrap.sh", "app"] restart: unless-stopped + cap_add: + - SYS_PTRACE ports: - 8088:8088 + - 5678:5678 user: "root" depends_on: *superset-depends-on volumes: *superset-volumes environment: CYPRESS_CONFIG: "${CYPRESS_CONFIG}" ``` Start Superset as usual ```bash docker compose up ``` Install the required libraries and packages to the docker container Enter the superset_app container ```bash docker exec -it superset_app /bin/bash root@39ce8cf9d6ab:/app# ``` Run the following commands inside the container ```bash apt update apt install -y gdb apt install -y net-tools pip install debugpy ``` Find the PID for the Flask process. Make sure to use the first PID. The Flask app will re-spawn a sub-process every time you change any of the python code. So it's important to use the first PID. ```bash ps -ef UID PID PPID C STIME TTY TIME CMD root 1 0 0 14:09 ? 00:00:00 bash /app/docker/docker-bootstrap.sh app root 6 1 4 14:09 ? 00:00:04 /usr/local/bin/python /usr/bin/flask run -p 8088 --with-threads --reload --debugger --host=0.0.0.0 root 10 6 7 14:09 ? 00:00:07 /usr/local/bin/python /usr/bin/flask run -p 8088 --with-threads --reload --debugger --host=0.0.0.0 ``` Inject debugpy into the running Flask process. In this case PID 6. ```bash python3 -m debugpy --listen 0.0.0.0:5678 --pid 6 ``` Verify that debugpy is listening on port 5678 ```bash netstat -tunap Active Internet connections (servers and established) Proto Recv-Q Send-Q Local Address Foreign Address State PID/Program name tcp 0 0 0.0.0.0:5678 0.0.0.0:* LISTEN 462/python tcp 0 0 0.0.0.0:8088 0.0.0.0:* LISTEN 6/python ``` You are now ready to attach a debugger to the process. Using VSCode you can configure a launch configuration file .vscode/launch.json like so. ```json { "version": "0.2.0", "configurations": [ { "name": "Attach to Superset App in Docker Container", "type": "python", "request": "attach", "connect": { "host": "127.0.0.1", "port": 5678 }, "pathMappings": [ { "localRoot": "${workspaceFolder}", "remoteRoot": "/app" } ] } ] } ``` VSCode will not stop on breakpoints right away. We've attached to PID 6 however it does not yet know of any sub-processes. In order to "wake up" the debugger you need to modify a python file. This will trigger Flask to reload the code and create a new sub-process. This new sub-process will be detected by VSCode and breakpoints will be activated. ### Debugging Server App in Kubernetes Environment To debug Flask running in POD inside kubernetes cluster. You'll need to make sure the pod runs as root and is granted the SYS_TRACE capability.These settings should not be used in production environments. ``` securityContext: capabilities: add: ["SYS_PTRACE"] ``` See (set capabilities for a container)[https://kubernetes.io/docs/tasks/configure-pod-container/security-context/#set-capabilities-for-a-container] for more details. Once the pod is running as root and has the SYS_PTRACE capability it will be able to debug the Flask app. You can follow the same instructions as in the docker-compose. Enter the pod and install the required library and packages; gdb, netstat and debugpy. Often in a Kubernetes environment nodes are not addressable from outside the cluster. VSCode will thus be unable to remotely connect to port 5678 on a Kubernetes node. In order to do this you need to create a tunnel that port forwards 5678 to your local machine. ``` kubectl port-forward pod/superset- 5678:5678 ``` You can now launch your VSCode debugger with the same config as above. VSCode will connect to to 127.0.0.1:5678 which is forwarded by kubectl to your remote kubernetes POD. ### Storybook Superset includes a [Storybook](https://storybook.js.org/) to preview the layout/styling of various Superset components, and variations thereof. To open and view the Storybook: ```bash cd superset-frontend npm run storybook ``` When contributing new React components to Superset, please try to add a Story alongside the component's `jsx/tsx` file. ## Translating We use [Flask-Babel](https://python-babel.github.io/flask-babel/) to translate Superset. In Python files, we import the magic `_` function using: ```python from flask_babel import lazy_gettext as _ ``` then wrap our translatable strings with it, e.g. `_('Translate me')`. During extraction, string literals passed to `_` will be added to the generated `.po` file for each language for later translation. At runtime, the `_` function will return the translation of the given string for the current language, or the given string itself if no translation is available. In TypeScript/JavaScript, the technique is similar: we import `t` (simple translation), `tn` (translation containing a number). ```javascript import { t, tn } from "@superset-ui/translation"; ``` ### Enabling language selection Add the `LANGUAGES` variable to your `superset_config.py`. Having more than one option inside will add a language selection dropdown to the UI on the right side of the navigation bar. ```python LANGUAGES = { 'en': {'flag': 'us', 'name': 'English'}, 'fr': {'flag': 'fr', 'name': 'French'}, 'zh': {'flag': 'cn', 'name': 'Chinese'}, } ``` ### Updating language files ```bash ./scripts/babel_update.sh ``` This script will 1. update the template file `superset/translations/messages.pot` with current application strings. 2. update language files with the new extracted strings. You can then translate the strings gathered in files located under `superset/translation`, where there's one per language. You can use [Poedit](https://poedit.net/features) to translate the `po` file more conveniently. There are some [tutorials in the wiki](https://wiki.lxde.org/en/Translate_*.po_files_with_Poedit). In the case of JS translation, we need to convert the PO file into a JSON file, and we need the global download of the npm package po2json. ```bash npm install -g po2json ``` To convert all PO files to formatted JSON files you can use the `po2json.sh` script. ```bash ./scripts/po2json.sh ``` If you get errors running `po2json`, you might be running the Ubuntu package with the same name, rather than the Node.js package (they have a different format for the arguments). If there is a conflict, you may need to update your `PATH` environment variable or fully qualify the executable path (e.g. `/usr/local/bin/po2json` instead of `po2json`). If you get a lot of `[null,***]` in `messages.json`, just delete all the `null,`. For example, `"year":["年"]` is correct while `"year":[null,"年"]`is incorrect. For the translations to take effect we need to compile translation catalogs into binary MO files. ```bash pybabel compile -d superset/translations ``` ### Creating a new language dictionary To create a dictionary for a new language, run the following, where `LANGUAGE_CODE` is replaced with the language code for your target language, e.g. `es` (see [Flask AppBuilder i18n documentation](https://flask-appbuilder.readthedocs.io/en/latest/i18n.html) for more details): ```bash pip install -r superset/translations/requirements.txt pybabel init -i superset/translations/messages.pot -d superset/translations -l LANGUAGE_CODE ``` Then, [Updating language files](#updating-language-files). ## Tips ### Adding a new datasource 1. Create Models and Views for the datasource, add them under superset folder, like a new my_models.py with models for cluster, datasources, columns and metrics and my_views.py with clustermodelview and datasourcemodelview. 1. Create DB migration files for the new models 1. Specify this variable to add the datasource model and from which module it is from in config.py: For example: ```python ADDITIONAL_MODULE_DS_MAP = {'superset.my_models': ['MyDatasource', 'MyOtherDatasource']} ``` This means it'll register MyDatasource and MyOtherDatasource in superset.my_models module in the source registry. ### Visualization Plugins The topic of authoring new plugins, whether you'd like to contribute it back or not has been well documented in the [the documentation](https://superset.apache.org/docs/contributing/creating-viz-plugins), and in [this blog post](https://preset.io/blog/building-custom-viz-plugins-in-superset-v2). To contribute a plugin to Superset, your plugin must meet the following criteria: - The plugin should be applicable to the community at large, not a particularly specialized use case - The plugin should be written with TypeScript - The plugin should contain sufficient unit/e2e tests - The plugin should use appropriate namespacing, e.g. a folder name of `plugin-chart-whatever` and a package name of `@superset-ui/plugin-chart-whatever` - The plugin should use them variables via Emotion, as passed in by the ThemeProvider - The plugin should provide adequate error handling (no data returned, malformed data, invalid controls, etc.) - The plugin should contain documentation in the form of a populated `README.md` file - The plugin should have a meaningful and unique icon - Above all else, the plugin should come with a _commitment to maintenance_ from the original author(s) Submissions will be considered for submission (or removal) on a case-by-case basis. ### Adding a DB migration 1. Alter the model you want to change. This example will add a `Column` Annotations model. [Example commit](https://github.com/apache/superset/commit/6c25f549384d7c2fc288451222e50493a7b14104) 1. Generate the migration file ```bash superset db migrate -m 'add_metadata_column_to_annotation_model' ``` This will generate a file in `migrations/version/{SHA}_this_will_be_in_the_migration_filename.py`. [Example commit](https://github.com/apache/superset/commit/d3e83b0fd572c9d6c1297543d415a332858e262) 1. Upgrade the DB ```bash superset db upgrade ``` The output should look like this: ``` INFO [alembic.runtime.migration] Context impl SQLiteImpl. INFO [alembic.runtime.migration] Will assume transactional DDL. INFO [alembic.runtime.migration] Running upgrade 1a1d627ebd8e -> 40a0a483dd12, add_metadata_column_to_annotation_model.py ``` 1. Add column to view Since there is a new column, we need to add it to the AppBuilder Model view. [Example commit](https://github.com/apache/superset/pull/5745/commits/6220966e2a0a0cf3e6d87925491f8920fe8a3458) 1. Test the migration's `down` method ```bash superset db downgrade ``` The output should look like this: ``` INFO [alembic.runtime.migration] Context impl SQLiteImpl. INFO [alembic.runtime.migration] Will assume transactional DDL. INFO [alembic.runtime.migration] Running downgrade 40a0a483dd12 -> 1a1d627ebd8e, add_metadata_column_to_annotation_model.py ``` ### Merging DB migrations When two DB migrations collide, you'll get an error message like this one: ```text alembic.util.exc.CommandError: Multiple head revisions are present for given argument 'head'; please specify a specific target revision, '@head' to narrow to a specific head, or 'heads' for all heads` ``` To fix it: 1. Get the migration heads ```bash superset db heads ``` This should list two or more migration hashes. E.g. ```bash 1412ec1e5a7b (head) 67da9ef1ef9c (head) ``` 2. Pick one of them as the parent revision, open the script for the other revision and update `Revises` and `down_revision` to the new parent revision. E.g.: ```diff --- a/67da9ef1ef9c_add_hide_left_bar_to_tabstate.py +++ b/67da9ef1ef9c_add_hide_left_bar_to_tabstate.py @@ -17,14 +17,14 @@ """add hide_left_bar to tabstate Revision ID: 67da9ef1ef9c -Revises: c501b7c653a3 +Revises: 1412ec1e5a7b Create Date: 2021-02-22 11:22:10.156942 """ # revision identifiers, used by Alembic. revision = "67da9ef1ef9c" -down_revision = "c501b7c653a3" +down_revision = "1412ec1e5a7b" import sqlalchemy as sa from alembic import op ``` Alternatively you may also run `superset db merge` to create a migration script just for merging the heads. ```bash superset db merge {HASH1} {HASH2} ``` 3. Upgrade the DB to the new checkpoint ```bash superset db upgrade ``` ### SQL Lab Async It's possible to configure a local database to operate in `async` mode, to work on `async` related features. To do this, you'll need to: - Add an additional database entry. We recommend you copy the connection string from the database labeled `main`, and then enable `SQL Lab` and the features you want to use. Don't forget to check the `Async` box - Configure a results backend, here's a local `FileSystemCache` example, not recommended for production, but perfect for testing (stores cache in `/tmp`) ```python from flask_caching.backends.filesystemcache import FileSystemCache RESULTS_BACKEND = FileSystemCache('/tmp/sqllab') ``` - Start up a celery worker ```shell script celery --app=superset.tasks.celery_app:app worker -O fair ``` Note that: - for changes that affect the worker logic, you'll have to restart the `celery worker` process for the changes to be reflected. - The message queue used is a `sqlite` database using the `SQLAlchemy` experimental broker. Ok for testing, but not recommended in production - In some cases, you may want to create a context that is more aligned to your production environment, and use the similar broker as well as results backend configuration ### Async Chart Queries It's possible to configure database queries for charts to operate in `async` mode. This is especially useful for dashboards with many charts that may otherwise be affected by browser connection limits. To enable async queries for dashboards and Explore, the following dependencies are required: - Redis 5.0+ (the feature utilizes [Redis Streams](https://redis.io/topics/streams-intro)) - Cache backends enabled via the `CACHE_CONFIG` and `DATA_CACHE_CONFIG` config settings - Celery workers configured and running to process async tasks The following configuration settings are available for async queries (see config.py for default values) - `GLOBAL_ASYNC_QUERIES` (feature flag) - enable or disable async query operation - `GLOBAL_ASYNC_QUERIES_REDIS_CONFIG` - Redis connection info - `GLOBAL_ASYNC_QUERIES_REDIS_STREAM_PREFIX` - the prefix used with Redis Streams - `GLOBAL_ASYNC_QUERIES_REDIS_STREAM_LIMIT` - the maximum number of events for each user-specific event stream (FIFO eviction) - `GLOBAL_ASYNC_QUERIES_REDIS_STREAM_LIMIT_FIREHOSE` - the maximum number of events for all users (FIFO eviction) - `GLOBAL_ASYNC_QUERIES_JWT_COOKIE_NAME` - the async query feature uses a [JWT](https://tools.ietf.org/html/rfc7519) cookie for authentication, this setting is the cookie's name - `GLOBAL_ASYNC_QUERIES_JWT_COOKIE_SECURE` - JWT cookie secure option - `GLOBAL_ASYNC_QUERIES_JWT_COOKIE_SAMESITE` - JWT cookie same site option - `GLOBAL_ASYNC_QUERIES_JWT_COOKIE_DOMAIN` - JWT cookie domain option ([see docs for set_cookie](https://tedboy.github.io/flask/interface_api.response_object.html#flask.Response.set_cookie)) - `GLOBAL_ASYNC_QUERIES_JWT_SECRET` - JWT's use a secret key to sign and validate the contents. This value should be at least 32 bytes and have sufficient randomness for proper security - `GLOBAL_ASYNC_QUERIES_TRANSPORT` - available options: "polling" (HTTP, default), "ws" (WebSocket, requires running superset-websocket server) - `GLOBAL_ASYNC_QUERIES_POLLING_DELAY` - the time (in ms) between polling requests More information on the async query feature can be found in [SIP-39](https://github.com/apache/superset/issues/9190). ## Chart Parameters Chart parameters are stored as a JSON encoded string the `slices.params` column and are often referenced throughout the code as form-data. Currently the form-data is neither versioned nor typed as thus is somewhat free-formed. Note in the future there may be merit in using something like [JSON Schema](https://json-schema.org/) to both annotate and validate the JSON object in addition to using a Mypy `TypedDict` (introduced in Python 3.8) for typing the form-data in the backend. This section serves as a potential primer for that work. The following tables provide a non-exhaustive list of the various fields which can be present in the JSON object grouped by the Explorer pane sections. These values were obtained by extracting the distinct fields from a legacy deployment consisting of tens of thousands of charts and thus some fields may be missing whilst others may be deprecated. Note not all fields are correctly categorized. The fields vary based on visualization type and may appear in different sections depending on the type. Verified deprecated columns may indicate a missing migration and/or prior migrations which were unsuccessful and thus future work may be required to clean up the form-data. ### Datasource & Chart Type | Field | Type | Notes | | ----------------- | -------- | ------------------------------------ | | `database_name` | _string_ | _Deprecated?_ | | `datasource` | _string_ | `__` | | `datasource_id` | _string_ | _Deprecated?_ See `datasource` | | `datasource_name` | _string_ | _Deprecated?_ | | `datasource_type` | _string_ | _Deprecated?_ See `datasource` | | `viz_type` | _string_ | The **Visualization Type** widget | ### Time | Field | Type | Notes | | ------------------ | -------- | ------------------------------- | | `granularity_sqla` | _string_ | The SQLA **Time Column** widget | | `time_grain_sqla` | _string_ | The SQLA **Time Grain** widget | | `time_range` | _string_ | The **Time range** widget | ### GROUP BY | Field | Type | Notes | | ------------------------- | --------------- | ----------------- | | `metrics` | _array(string)_ | See Query section | | `order_asc` | - | See Query section | | `row_limit` | - | See Query section | | `timeseries_limit_metric` | - | See Query section | ### NOT GROUPED BY | Field | Type | Notes | | --------------- | --------------- | ----------------------- | | `order_by_cols` | _array(string)_ | The **Ordering** widget | | `row_limit` | - | See Query section | ### Y Axis 1 | Field | Type | Notes | | --------------- | ---- | -------------------------------------------------- | | `metric` | - | The **Left Axis Metric** widget. See Query section | | `y_axis_format` | - | See Y Axis section | ### Y Axis 2 | Field | Type | Notes | | ---------- | ---- | --------------------------------------------------- | | `metric_2` | - | The **Right Axis Metric** widget. See Query section | ### Query | Field | Type | Notes | | ------------------------------------------------------------------------------------------------------ | ------------------------------------------------- | --------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- | | `adhoc_filters` | _array(object)_ | The **Filters** widget | | `extra_filters` | _array(object)_ | Another pathway to the **Filters** widget.
It is generally used to pass dashboard filter parameters to a chart.
It can be used for appending additional filters to a chart that has been saved with its own filters on an ad-hoc basis if the chart is being used as a standalone widget.

For implementation examples see : [utils test.py](https://github.com/apache/superset/blob/66a4c94a1ed542e69fe6399bab4c01d4540486cf/tests/utils_tests.py#L181)
For insight into how superset processes the contents of this parameter see: [exploreUtils/index.js](https://github.com/apache/superset/blob/93c7f5bb446ec6895d7702835f3157426955d5a9/superset-frontend/src/explore/exploreUtils/index.js#L159) | | `columns` | _array(string)_ | The **Breakdowns** widget | | `groupby` | _array(string)_ | The **Group by** or **Series** widget | | `limit` | _number_ | The **Series Limit** widget | | `metric`
`metric_2`
`metrics`
`percent_metrics`
`secondary_metric`
`size`
`x`
`y` | _string_,_object_,_array(string)_,_array(object)_ | The metric(s) depending on the visualization type | | `order_asc` | _boolean_ | The **Sort Descending** widget | | `row_limit` | _number_ | The **Row limit** widget | | `timeseries_limit_metric` | _object_ | The **Sort By** widget | The `metric` (or equivalent) and `timeseries_limit_metric` fields are all composed of either metric names or the JSON representation of the `AdhocMetric` TypeScript type. The `adhoc_filters` is composed of the JSON represent of the `AdhocFilter` TypeScript type (which can comprise of columns or metrics depending on whether it is a WHERE or HAVING clause). The `all_columns`, `all_columns_x`, `columns`, `groupby`, and `order_by_cols` fields all represent column names. ### Chart Options | Field | Type | Notes | | -------------- | --------- | --------------------------- | | `color_picker` | _object_ | The **Fixed Color** widget | | `label_colors` | _object_ | The **Color Scheme** widget | | `normalized` | _boolean_ | The **Normalized** widget | ### Y Axis | Field | Type | Notes | | ---------------- | -------- | ---------------------------- | | `y_axis_2_label` | _N/A_ | _Deprecated?_ | | `y_axis_format` | _string_ | The **Y Axis Format** widget | | `y_axis_zero` | _N/A_ | _Deprecated?_ | Note the `y_axis_format` is defined under various section for some charts. ### Other | Field | Type | Notes | | -------------- | -------- | ----- | | `color_scheme` | _string_ | | ### Unclassified | Field | Type | Notes | | ----------------------------- | ----- | ----- | | `add_to_dash` | _N/A_ | | | `code` | _N/A_ | | | `collapsed_fieldsets` | _N/A_ | | | `comparison type` | _N/A_ | | | `country_fieldtype` | _N/A_ | | | `default_filters` | _N/A_ | | | `entity` | _N/A_ | | | `expanded_slices` | _N/A_ | | | `filter_immune_slice_fields` | _N/A_ | | | `filter_immune_slices` | _N/A_ | | | `flt_col_0` | _N/A_ | | | `flt_col_1` | _N/A_ | | | `flt_eq_0` | _N/A_ | | | `flt_eq_1` | _N/A_ | | | `flt_op_0` | _N/A_ | | | `flt_op_1` | _N/A_ | | | `goto_dash` | _N/A_ | | | `import_time` | _N/A_ | | | `label` | _N/A_ | | | `linear_color_scheme` | _N/A_ | | | `new_dashboard_name` | _N/A_ | | | `new_slice_name` | _N/A_ | | | `num_period_compare` | _N/A_ | | | `period_ratio_type` | _N/A_ | | | `perm` | _N/A_ | | | `rdo_save` | _N/A_ | | | `refresh_frequency` | _N/A_ | | | `remote_id` | _N/A_ | | | `resample_fillmethod` | _N/A_ | | | `resample_how` | _N/A_ | | | `rose_area_proportion` | _N/A_ | | | `save_to_dashboard_id` | _N/A_ | | | `schema` | _N/A_ | | | `series` | _N/A_ | | | `show_bubbles` | _N/A_ | | | `slice_name` | _N/A_ | | | `timed_refresh_immune_slices` | _N/A_ | | | `userid` | _N/A_ | |