diff --git a/index.html b/index.html
index 357f297..9fa0878 100644
--- a/index.html
+++ b/index.html
@@ -708,13 +708,10 @@ NN.Network.Stochastic = function(inNetwork, inTrainingSet, inIterations)
 	let nn1 = NN.Network.Create(2, 3, 2);
 	nn1.Layers[0].Forward.Matrix = matrix1;
 	nn1.Layers[1].Forward.Matrix = matrix2;
+	nn1.LearningRate = 0.1;
+	//let logLayers = inNN => inNN.Layers.forEach(L=>console.log(L.Forward.Matrix));
 
-	let logLayers = inNN => inNN.Layers.forEach(L=>console.log(L.Forward.Matrix));
-
-	logLayers(nn1);
-
-	NN.Network.Batch(nn1, {Input:input, Output:output}, 100);
-
-	logLayers(nn1);
+	NN.Network.Batch(nn1, {Input:input, Output:output}, 1000);
+	console.log(NN.Network.Observe(nn1, input));
 
 
\ No newline at end of file
diff --git a/nn.test.js b/nn.test.js
index 87a2321..c5d7e7c 100644
--- a/nn.test.js
+++ b/nn.test.js
@@ -1,5 +1,5 @@
 import { assert, assertEquals } from "https://deno.land/std@0.102.0/testing/asserts.ts";
-import { Label, Forward, Backward } from "./nn.ts";
+import { Split, Forward, Backward } from "./nn.ts";
 import { default as M } from "./m.ts";
 import { default as Methods } from "./m.ts";
 
@@ -17,7 +17,7 @@ let typeB = [
 ];
 
 
-Deno.test("check.forward", ()=>
+Deno.test("check forward/backward", ()=>
 {
     let matrix1 = [
     [-0.43662948305036675, -0.368590640707799, -0.23227179558890843],
@@ -44,14 +44,25 @@ Deno.test("check.forward", ()=>
     ];
 
     let layers = [matrix1, matrix2];
-    console.log("BEFORE", layers);
-    for(let i=0; i<100; i++)
+    let stages = [];
+    for(let i=0; i<1000; i++)
     {
-        let stages = Forward(Methods.Mutate.Pad(input), layers);
+        stages = Forward(Methods.Mutate.Pad(input), layers);
         Backward(stages, layers, output, 0.1);
     }
 
-    console.log("AFTER", layers);
+    stages = Forward(input, layers);
+    console.log(stages[stages.length-1]);
+});
+
+Deno.test("NN.Split", ()=>
+{
+    let data = [
+        [3, 2, 1, 0, 1],
+        [6, 5, 4, 1, 0]
+    ]
+    let split = Split(data, [3, 4]);
+    console.log(split);
 });
 
 
diff --git a/nn.ts b/nn.ts
index 98e666e..c7922a7 100644
--- a/nn.ts
+++ b/nn.ts
@@ -1,31 +1,13 @@
 import { default as M, Cloud } from "./m.ts";
 export type N = Array>>
 
-const Label = (inSet:any, inData:Cloud.M, inLabel:Cloud.V):N =>
-{
-    if(!inSet){inSet = [[], []];}
-    if(inSet.length == 0){inSet.push([]);}
-    if(inSet.length == 1){inSet.push([]);}
-
-    inData.forEach((row:Cloud.V) =>
-    {
-        row.push(1);
-        inSet[0].push(row);
-        inSet[1].push(inLabel);
-    });
-    return inSet;
-};
-
 const Forward = (inData:Cloud.M, inLayers:N):N =>
 {
     let i:number;
-    let stages = [inData];
+    let stages:N = [inData];
     let process = (index:number):Cloud.M => M.Batch.Sigmoid(M.Batch.Affine(stages[index], inLayers[index]));
 
-    for(i=0; i
 
     for(i=inLayers.length-1; i>=0; i--)
     {
-        let  layerInput:Cloud.M = inStages[i];
-        let layerOutput:Cloud.M = inStages[i+1];
-        let errorScaled:Cloud.M = M.Batch.Multiply(errorBack, M.Batch.Derivative(layerOutput));
-
+        let errorScaled:Cloud.M = M.Batch.Multiply(errorBack, M.Batch.Derivative(inStages[i+1]));
         errorBack = M.Batch.Affine(errorScaled, M.Create.Transpose(inLayers[i]));
-
-        errorScaled.forEach((inScaledError:Cloud.V, inIndex:number)=> {
-            const deltas = M.Batch.Scale(M.Create.Outer(layerInput[inIndex], inScaledError), inRate);
-            inLayers[i] = M.Batch.Subtract(inLayers[i], deltas);
+        errorScaled.forEach((inScaledError:Cloud.V, inIndex:number)=>
+        {
+            inLayers[i] = M.Batch.Subtract(
+                inLayers[i],
+                M.Batch.Scale(M.Create.Outer(inStages[i][inIndex], inScaledError), inRate)
+            );
         });
-
     }
     return inLayers;
 };
+const Split = (inTrainingSet:Cloud.M, inHeaderLabel:Cloud.V, inHeaderKeep:Cloud.V = []):N =>
+{
+    let data:Cloud.M = [];
+    let label:Cloud.M = [];
+    if(!inHeaderKeep.length)
+    {
+        inTrainingSet[0].forEach( (item:number, index:number)=> inHeaderLabel.includes(index) ? false : inHeaderKeep.push(index) );
+    }
+    inTrainingSet.forEach((row:Cloud.V) =>
+    {
+         data.push( [...inHeaderKeep.map((i:number)=>row[i]), 1] );
+        label.push( inHeaderLabel.map((i:number)=>row[i]) );
+    });
+    return [ data, label ];
+};
+const Build = (...inLayers:Array):N =>
+{
+    let i:number;
+    let output:N = [];
+    let rand = (inDimensions:number, inCount:number):Cloud.M => M.Create.Box( new Array(inDimensions).fill(-1), new Array(inDimensions).fill(1), inCount);
+    for(i=0; i
+{
+    let stages:N = Forward(inData, inLayers);
+    return stages[stages.length-1];
+};
+const Learn = (inData:Cloud.M, inLayers:N, inLabels:Cloud.M, inIterations:number, inRate:number):Cloud.M =>
+{
+    let stages:N = [];
+    for(let i=0; i