diff --git a/index.html b/index.html
index 357f297..9fa0878 100644
--- a/index.html
+++ b/index.html
@@ -708,13 +708,10 @@ NN.Network.Stochastic = function(inNetwork, inTrainingSet, inIterations)
let nn1 = NN.Network.Create(2, 3, 2);
nn1.Layers[0].Forward.Matrix = matrix1;
nn1.Layers[1].Forward.Matrix = matrix2;
+ nn1.LearningRate = 0.1;
+ //let logLayers = inNN => inNN.Layers.forEach(L=>console.log(L.Forward.Matrix));
- let logLayers = inNN => inNN.Layers.forEach(L=>console.log(L.Forward.Matrix));
-
- logLayers(nn1);
-
- NN.Network.Batch(nn1, {Input:input, Output:output}, 100);
-
- logLayers(nn1);
+ NN.Network.Batch(nn1, {Input:input, Output:output}, 1000);
+ console.log(NN.Network.Observe(nn1, input));
\ No newline at end of file
diff --git a/nn.test.js b/nn.test.js
index 87a2321..c5d7e7c 100644
--- a/nn.test.js
+++ b/nn.test.js
@@ -1,5 +1,5 @@
import { assert, assertEquals } from "https://deno.land/std@0.102.0/testing/asserts.ts";
-import { Label, Forward, Backward } from "./nn.ts";
+import { Split, Forward, Backward } from "./nn.ts";
import { default as M } from "./m.ts";
import { default as Methods } from "./m.ts";
@@ -17,7 +17,7 @@ let typeB = [
];
-Deno.test("check.forward", ()=>
+Deno.test("check forward/backward", ()=>
{
let matrix1 = [
[-0.43662948305036675, -0.368590640707799, -0.23227179558890843],
@@ -44,14 +44,25 @@ Deno.test("check.forward", ()=>
];
let layers = [matrix1, matrix2];
- console.log("BEFORE", layers);
- for(let i=0; i<100; i++)
+ let stages = [];
+ for(let i=0; i<1000; i++)
{
- let stages = Forward(Methods.Mutate.Pad(input), layers);
+ stages = Forward(Methods.Mutate.Pad(input), layers);
Backward(stages, layers, output, 0.1);
}
- console.log("AFTER", layers);
+ stages = Forward(input, layers);
+ console.log(stages[stages.length-1]);
+});
+
+Deno.test("NN.Split", ()=>
+{
+ let data = [
+ [3, 2, 1, 0, 1],
+ [6, 5, 4, 1, 0]
+ ]
+ let split = Split(data, [3, 4]);
+ console.log(split);
});
diff --git a/nn.ts b/nn.ts
index 98e666e..c7922a7 100644
--- a/nn.ts
+++ b/nn.ts
@@ -1,31 +1,13 @@
import { default as M, Cloud } from "./m.ts";
export type N = Array>>
-const Label = (inSet:any, inData:Cloud.M, inLabel:Cloud.V):N =>
-{
- if(!inSet){inSet = [[], []];}
- if(inSet.length == 0){inSet.push([]);}
- if(inSet.length == 1){inSet.push([]);}
-
- inData.forEach((row:Cloud.V) =>
- {
- row.push(1);
- inSet[0].push(row);
- inSet[1].push(inLabel);
- });
- return inSet;
-};
-
const Forward = (inData:Cloud.M, inLayers:N):N =>
{
let i:number;
- let stages = [inData];
+ let stages:N = [inData];
let process = (index:number):Cloud.M => M.Batch.Sigmoid(M.Batch.Affine(stages[index], inLayers[index]));
- for(i=0; i
for(i=inLayers.length-1; i>=0; i--)
{
- let layerInput:Cloud.M = inStages[i];
- let layerOutput:Cloud.M = inStages[i+1];
- let errorScaled:Cloud.M = M.Batch.Multiply(errorBack, M.Batch.Derivative(layerOutput));
-
+ let errorScaled:Cloud.M = M.Batch.Multiply(errorBack, M.Batch.Derivative(inStages[i+1]));
errorBack = M.Batch.Affine(errorScaled, M.Create.Transpose(inLayers[i]));
-
- errorScaled.forEach((inScaledError:Cloud.V, inIndex:number)=> {
- const deltas = M.Batch.Scale(M.Create.Outer(layerInput[inIndex], inScaledError), inRate);
- inLayers[i] = M.Batch.Subtract(inLayers[i], deltas);
+ errorScaled.forEach((inScaledError:Cloud.V, inIndex:number)=>
+ {
+ inLayers[i] = M.Batch.Subtract(
+ inLayers[i],
+ M.Batch.Scale(M.Create.Outer(inStages[i][inIndex], inScaledError), inRate)
+ );
});
-
}
return inLayers;
};
+const Split = (inTrainingSet:Cloud.M, inHeaderLabel:Cloud.V, inHeaderKeep:Cloud.V = []):N =>
+{
+ let data:Cloud.M = [];
+ let label:Cloud.M = [];
+ if(!inHeaderKeep.length)
+ {
+ inTrainingSet[0].forEach( (item:number, index:number)=> inHeaderLabel.includes(index) ? false : inHeaderKeep.push(index) );
+ }
+ inTrainingSet.forEach((row:Cloud.V) =>
+ {
+ data.push( [...inHeaderKeep.map((i:number)=>row[i]), 1] );
+ label.push( inHeaderLabel.map((i:number)=>row[i]) );
+ });
+ return [ data, label ];
+};
+const Build = (...inLayers:Array):N =>
+{
+ let i:number;
+ let output:N = [];
+ let rand = (inDimensions:number, inCount:number):Cloud.M => M.Create.Box( new Array(inDimensions).fill(-1), new Array(inDimensions).fill(1), inCount);
+ for(i=0; i
+{
+ let stages:N = Forward(inData, inLayers);
+ return stages[stages.length-1];
+};
+const Learn = (inData:Cloud.M, inLayers:N, inLabels:Cloud.M, inIterations:number, inRate:number):Cloud.M =>
+{
+ let stages:N = [];
+ for(let i=0; i